219 research outputs found
Nanoformulations of a potent copper-based aquaporin inhibitor with cytotoxic effect against cancer cells
Aim: Development of liposomal formulations of Cuphen, a potent copper-based aquaporin inhibitor with therapeutic potential against melanoma and colon cancer. Materials & methods: Cuphen was incorporated into liposomes using the dehydration–rehydration method. The ability of Cuphen to induce cancer cell death was evaluated by MTS and ViaCount assays. In vivo toxicity studies were performed in BALB/c mice. Results: In vitro studies illustrated the antiproliferative effects of Cuphen in different cancer cell lines, in free form or after incorporation into liposomes. In vivo studies revealed no toxic effects after parenteral administration of Cuphen liposomes. Conclusions: Cuphen liposomes are highly attractive to be further tested in murine models due to the possibility of stabilizing and specifically deliver this metallodrug to tumor sites. </jats:p
Evaluation of Tissue and Circulating miR-21 as Potential Biomarker of Response to Chemoradiotherapy in Rectal Cancer
Response to chemoradiotherapy (CRT) in patients with locally advanced rectal cancer (RC) is quite variable and it is urgent to find predictive biomarkers of response. We investigated miR-21 as tissue and plasma biomarker of response to CRT in a prospective cohort of RC patients; The expression of miR-21 was analyzed in pre- and post-CRT rectal tissue and plasma in 37 patients with RC. Two groups were defined: Pathological responders (TRG 0, 1 and 2) and non-responders (TRG 3). The association between miR-21, clinical and oncological outcomes was assessed; miR-21 was upregulated in tumor tissue and we found increased odds of overexpression in pre-CRT tumor tissue (OR: 1.63; 95% CI: 0.40–6.63, p = 0.498) and pre-CRT plasma (OR: 1.79; 95% CI: 0.45–7.19, p = 0.414) of non-responders. The overall recurrence risk increased with miR-21 overexpression in pre-CRT tumor tissue (HR: 2.175, p = 0.37); Significantly higher miR-21 expression is observed in tumor tissue comparing with non-neoplastic. Increased odds of non-response is reported in patients expressing higher miR-21, although without statistical significance. This is one of the first studies on circulating miR-21 as a potential biomarker of response to CRT in RC patients.info:eu-repo/semantics/publishedVersio
Potential of miR-21 to Predict Incomplete Response to Chemoradiotherapy in Rectal Adenocarcinoma
Background: Patients with locally advanced rectal adenocarcinoma (LARC) are treated with neoadjuvant chemoradiotherapy (CRT). However, biomarkers for patient selection are lacking, and the association between miRNA expression and treatment response and oncological outcomes is unclear.
Objectives: To investigate miRNAs as predictors of response to neoadjuvant CRT and its association with oncological outcomes.
Methods: This retrospective study analyzed miRNA expression (miR-16, miR-21, miR-135b, miR-145, and miR-335) in pre- and post-chemoradiation rectal adenocarcinoma tissue and non-neoplastic mucosa in 91 patients treated with neoadjuvant CRT (50.4 Gy) and proctectomy. Two groups were defined: a pathological complete responders group (tumor regression grade—TRG 0) and a pathological incomplete responders group (TRG 1, 2, and 3).
Results: miR-21 and miR-135b were upregulated in tumor tissue of incomplete responders comparing with non-neoplastic tissue (p = 0.008 and p < 0.0001, respectively). Multivariate analysis showed significant association between miR-21 in pre-CRT tumor tissue and response, with a 3.67 odds ratio (OR) of incomplete response in patients with higher miR-21 levels (p = 0.04). Although with no significance, patients treated with 5-fluorouracil (5-FU) presented reduced odds of incomplete response compared with those treated with capecitabine (OR = 0.19; 95% confidence interval (CI) 0.03–1.12, p = 0.05). Moreover, significant differences were seen in overall survival (OS) in relation to clinical TNM stage (p = 0.0004), cT (p = 0.0001), presence of distant disease (p = 0.002), mesorectal tumor deposits (p = 0.003), and tumor regression grade (p = 0.04).
Conclusion: miR-21 may predict response to CRT in rectal cancer (RC).info:eu-repo/semantics/publishedVersio
The Emerging Role of microRNAs in Aquaporin Regulation
Aquaporins (AQPs) are membrane channels widely distributed in human tissues. AQPs are essential for water and energy homeostasis being involved in a broad range of pathophysiological processes such as edema, brain injury, glaucoma, nephrogenic diabetes insipidus, salivary and lacrimal gland dysfunction, cancer, obesity and related metabolic complications. Compelling evidence indicates that AQPs are targets for therapeutic intervention with potential broad application. Nevertheless, efficient AQP modulators have been difficult to find due to either lack of selectivity and stability, or associated toxicity that hamper in vivo studies. MicroRNAs (miRNAs) are naturally occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. Recent identification of miRNAs as endogenous modulators of AQP expression provides an alternative approach to target these proteins and opens new perspectives for therapeutic applications. This mini-review compiles the current knowledge of miRNA interaction with AQPs highlighting miRNA potential for regulation of AQP-based disorders
Corrigendum: A Novel Small Molecule p53 Stabilizer for Brain Cell Differentiation
Brain tumor, as any type of cancer, is assumed to be sustained by a small subpopulation of stem-like cells with distinctive properties that allow them to survive conventional therapies and drive tumor recurrence. Thus, the identification of new molecules capable of controlling stemness properties may be key in developing effective therapeutic strategies for cancer by inducing stem-like cells differentiation. Spiropyrazoline oxindoles have previously been shown to induce apoptosis and cell cycle arrest, as well as upregulate p53 steady-state levels, while decreasing its main inhibitor MDM2 in the HCT116 human colorectal carcinoma cell line. In this study, we made modifications in this scaffold by including combinations of different substituents in the pyrazoline ring in order to obtain novel small molecules that could modulate p53 activity and act as differentiation inducer agents. The antiproliferative activity of the synthesized compounds was assessed using the isogenic pair of HCT116 cell lines differing in the presence or absence of the p53 gene. Among the tested spirooxindoles, spiropyrazoline oxindole 1a was selective against the cancer cell line expressing wild-type p53 and presented low cytotoxicity. This small molecule induced neural stem cell (NSC) differentiation through reduced SOX2 (marker of multipotency) and increased βIII-tubulin (marker of neural differentiation) which suggests a great potential as a non-toxic inducer of cell differentiation. More importantly, in glioma cancer cells (GL-261), compound 1a reduced stemness, by decreasing SOX2 protein levels, while also promoting chemotherapy sensitization. These results highlight the potential of p53 modulators for brain cell differentiation, with spirooxindole 1a representing a promising lead molecule for the development of new brain antitumor drugs.</p
A Novel Small Molecule p53 Stabilizer for Brain Cell Differentiation
Brain tumor, as any type of cancer, is assumed to be sustained by a small subpopulation of stem-like cells with distinctive properties that allow them to survive conventional therapies and drive tumor recurrence. Thus, the identification of new molecules capable of controlling stemness properties may be key in developing effective therapeutic strategies for cancer by inducing stem-like cells differentiation. Spiropyrazoline oxindoles have previously been shown to induce apoptosis and cell cycle arrest, as well as upregulate p53 steady-state levels, while decreasing its main inhibitor MDM2 in the HCT116 human colorectal carcinoma cell line. In this study, we made modifications in this scaffold by including combinations of different substituents in the pyrazoline ring in order to obtain novel small molecules that could modulate p53 activity and act as differentiation inducer agents. The antiproliferative activity of the synthesized compounds was assessed using the isogenic pair of HCT116 cell lines differing in the presence or absence of the p53 gene. Among the tested spirooxindoles, spiropyrazoline oxindole 1a was selective against the cancer cell line expressing wild-type p53 and presented low cytotoxicity. This small molecule induced neural stem cell (NSC) differentiation through reduced SOX2 (marker of multipotency) and increased βIII-tubulin (marker of neural differentiation) which suggests a great potential as a non-toxic inducer of cell differentiation. More importantly, in glioma cancer cells (GL-261), compound 1a reduced stemness, by decreasing SOX2 protein levels, while also promoting chemotherapy sensitization. These results highlight the potential of p53 modulators for brain cell differentiation, with spirooxindole 1a representing a promising lead molecule for the development of new brain antitumor drugs
Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk
We are deeply thankful to Professor David W. Russell (University of Texas Southwestern Medical Center) for the kind gift of the anti-CYP46A1 antibody. This work was supported by FEDER (COMPETE Programme) and national funds from Fundacao para a Ciencia e a Tecnologia (FCT), Portugal, research grants iMed.ULisboa (UID/DTP/04138/2013), PTDC/SAU/NMC/110809/2009 (to E.R.), SFRH/BD/78041/2011 (to M.M.) SFRH/BPD/95855/2013 (to M.J.N), and, Swedish Research Council (J.L.R. and I.B.), Marie Curie Career Integration Grant and Novo Nordisk Fonden (J.L.R.) and Swedish Brain Power (I.B.).Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers.publishersversionpublishe
Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation
© 2015 Macmillan Publishers Limited All rights reserved. Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0This study was designed to evaluate MEK5 and ERK5 expression in colon cancer progression and to ascertain the relevance of MEK5/ERK5 signalling in colon cancer. Expression of MEK5 and ERK5 was evaluated in 323 human colon cancer samples. To evaluate the role of MEK5/ERK5 signalling in colon cancer, we developed a stable cell line model with differential MEK5/ERK5 activation. Impact of differential MEK5/ERK5 signalling was evaluated on cell cycle progression by flow cytometry and cell migration was evaluated by wound healing and transwell migration assays. Finally, we used an orthotopic xenograft mouse model of colon cancer to assess tumour growth and progression. Our results demonstrated that MEK5 and ERK5 are overexpressed in human adenomas (P<0.01) and adenocarcinomas (P<0.05), where increased ERK5 expression correlated with the acquisition of more invasive and metastatic potential (P<0.05). Interestingly, we observed a significant correlation between ERK5 expression and NF-κB activation in human adenocarcinomas (P<0.001). We also showed that ERK5 overactivation significantly accelerated cell cycle progression (P<0.05) and increased cell migration (P<0.01). Furthermore, cells with overactivated ERK5 displayed increased NF-κB nuclear translocation and transcriptional activity (P<0.05), together with increased expression of the mesenchymal marker vimentin (P<0.05). We further demonstrated that increased NF-κB activation was associated with increased IκB phosphorylation and degradation (P<0.05). Finally, in the mouse model, lymph node metastasis was exclusively seen in orthotopically implanted tumours with overactivated MEK5/ERK5, and not in tumours with inhibited MEK5/ERK5. Our results suggested that MEK5/ERK5/NF-κB signalling pathway is important for tumour onset, progression and metastasis, possibly representing a novel relevant therapeutic target in colon cancer treatment.This study was supported by Fundação para a Ciência e Tecnologia (HMSP-ICT/0018/2011, SFRH/BD/96517/2013, SFRH/BD/88619/2012 and SFRH/BD/79356/2011).info:eu-repo/semantics/publishedVersio
NPC1-like phenotype, with intracellular cholesterol accumulation and altered mTORC1 signaling in models of Parkinson's disease
Funding Information: The work was supported by FEDER/Programa Operacional Regional de Lisboa – Lisboa 2020 (LISBOA-01-0145-FEDER-030104) and by National funds from Fundação para a Ciência e a Tecnologia (PTDC/MEDFSL/30104/2017), and by the Swedish Research Council. Publisher Copyright: © 2023 The AuthorsDisruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5′ adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.publishersversionpublishe
miR-335 targets LRRK2 and mitigates inflammation in Parkinson’s disease
Copyright © 2021 Oliveira, Dionísio, Gaspar, Correia Guedes, Coelho, Rosa, Ferreira, Amaral and Rodrigues. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Parkinson's disease (PD) is mainly driven by dopaminergic neuronal degeneration in the substantia nigra pars compacta accompanied by chronic neuroinflammation. Despite being mainly sporadic, approximately 10% of all cases are defined as heritable forms of PD, with mutations in the leucine-rich repeat kinase (LRRK2) gene being the most frequent known cause of familial PD. MicroRNAs (miRNAs or miRs), including miR-335, are frequently deregulated in neurodegenerative diseases, such as PD. Here, we aimed to dissect the protective role of miR-335 during inflammation and/or neurodegenerative events in experimental models of PD. Our results showed that miR-335 is significantly downregulated in different PD-mimicking conditions, including BV2 microglia cells stimulated with lipopolysaccharide (LPS) and/or overexpressing wild-type LRRK2. Importantly, these results were confirmed in serum of mice injected with 1-methyl-1-4-phenyl-1,2,3,6-tetrahydripyridine hydrochloride (MPTP), and further validated in patients with idiopathic PD (iPD) and those harboring mutations in LRRK2 (LRRK2-PD), thus corroborating potential clinical relevance. Mechanistically, miR-335 directly targeted LRRK2 mRNA. In the BV2 and N9 microglia cell lines, miR-335 strongly counteracted LPS-induced proinflammatory gene expression, and downregulated receptor interacting protein 1 (RIP1) and RIP3, two important players of necroptotic and inflammatory signaling pathways. Further, miR-335 inhibited LPS-mediated ERK1/2 activation. LRRK2-Wt-induced proinflammatory gene expression was also significantly reduced by miR-335 overexpression. Finally, in SH-SY5Y neuroblastoma cells, miR-335 decreased the expression of pro-inflammatory genes triggered by α-synuclein. In conclusion, we revealed novel roles for miR-335 in both microglia and neuronal cells that strongly halt the effects of classical inflammatory stimuli or LRRK2-Wt overexpression, thus attenuating chronic neuroinflammation.This research was funded in part by UIDB/04138/2020 from Fundação para a Ciência e Tecnologia (FCT), Portugal. SO received a Ph.D. fellowship (PD/BD/128332/2017) from FCT.info:eu-repo/semantics/publishedVersio
- …