10 research outputs found

    Ligands specify estrogen receptor alpha nuclear localization and degradation

    No full text
    Abstract Background The estrogen receptor alpha (ERα) is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. Results A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line) was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα. Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17ÎČ-estradiol (E2), and pure antagonists (selective estrogen regulator disruptor; SERD), ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM), 4-hydroxytamoxifen (OHT) or RU39,411, diffuse nuclear staining persisted. Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. Conclusions Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on transcription. These findings provide a molecular basis for the selection of antiestrogen compounds issue from pharmacological studies aimed at improving treatment of breast cancer.</p

    Entomophagie et risque allergique

    No full text
    International audienceThough traditionally confined to some Asian, African and South American countries, consumption of edible insects, known as entomophagy, is gradually spreading to the USA and European countries. Although it remains rather limited, essentially for psychological reasons, in some European countries entomophagy is developing with the emergence of companies dedicated to the mass production of edible insects, together with the opening of restaurants specialized in menus featuring such insects. In spite of the nutritional interest and apparent safety of eating edible insects, it is advisable that we be aware of the allergic risk, which this may represent for people allergic to shellfish, mollusks or house dust mites. Various panallergens such as tropomyosin and arginine kinase, which are common to insects, crustaceans, mollusks, dust mites and nematodes, can be responsible for the cross-reactivity between these organisms of different origins. In addition to these panallergens, other allergens more specifically associated with insects could likewise trigger allergic reactions. However, these allergens are still not well known and remain to be identified and characterized. In the meantime and because of the existence of cross-reactive allergens in insects, it seems wise to advise individuals known to be allergic to shellfish or mollusks to avoid eating edible insects.Traditionnellement confinĂ©e Ă  diffĂ©rents pays d’Asie, d’Afrique et d’AmĂ©rique du Sud, la consommation d’insectes ou entomophagie commence Ă  s’étendre Ă  l’Europe et aux États-Unis. Bien que trĂšs limitĂ©e, surtout pour des raisons psychologiques, l’entomophagie tend Ă  se dĂ©velopper avec l’émergence, dans diffĂ©rents pays d’Europe, d’une production industrielle d’insectes comestibles, associĂ©e Ă  l’ouverture de restaurants spĂ©cialisĂ©s dans des menus Ă  base d’insectes. MalgrĂ© l’intĂ©rĂȘt nutritionnel et l’apparente innocuitĂ© des insectes comestibles, il convient d’apprĂ©cier le risque allergĂ©nique qu’ils peuvent reprĂ©senter pour des sujets allergiques aux crustacĂ©s, aux acariens ou aux mollusques. Divers pan-allergĂšnes tels que la tropomyosine ou l’arginine-kinase, communs aux insectes, aux crustacĂ©s, aux acariens, aux mollusques et aux nĂ©matodes, pourraient ĂȘtre responsables de rĂ©actions croisĂ©es entre ces organismes d’origine diffĂ©rente. D’autres allergĂšnes, plus spĂ©cifiques des insectes, pourraient Ă©galement dĂ©clencher des rĂ©actions allergiques. Ces allergĂšnes restent encore trĂšs mal connus et demandent Ă  ĂȘtre identifiĂ©s et caractĂ©risĂ©s. Dans cette attente et en raison de l’existence d’allergĂšnes croisants chez les insectes, il paraĂźt prudent de conseiller aux personnes allergiques aux crustacĂ©s ou aux mollusques, d’éviter de consommer ce genre de nourriture

    Allergénicité des protéines édulcorantes: What about the allergenicity of sweet-tasting proteins?

    No full text
    International audiencePlant proteins with sweet-tasting properties are increasingly used as substitutes for low-calorie sweeteners in the food industry. Thaumatin, the sweet protein isolated from the aril of the katemfe fruit (Thaumatococcus daniellii), is widely used as a natural sweetener. Two other low-calorie sweeteners with enhanced sweet-tasting properties, brazzein and monellin, which are isolated from the fruits of Pentadiplandra brazzeana and Dioscoreophyllum cumminsii, respectively, are still waiting to be produced on a large scale as recombinant sweet proteins for food industry. Although these sweet-tasting proteins are constitutively expressed in fruits, most of them consist of PR-proteins whose synthesis is strongly enhanced as a result of infection of the plant by phytopathogenic micro-organisms, fungi or molds. Both the sequence and structural similarities which the sweet proteins share with allergens, e.g., Art v 1 for brazzein, Mus a 4 and Ole a 13 for thaumatin, Ana o 3 and Pis v 1 for mabinlin, and Gly m Kunitz trypsin-inhibitor for monellin, suggest some possible allergenic propensity for these plant proteins. However, their allergenic potential following ingestion still remains to be demonstrated unambiguously.Des protĂ©ines vĂ©gĂ©tales Ă  propriĂ©tĂ©s Ă©dulcorantes sont utilisĂ©es dans diffĂ©rents secteurs de l’alimentation humaine oĂč elles remplacent les Ă©dulcorants de synthĂšse. C’est le cas de la thaumatine, protĂ©ine Ă©dulcorante extraite de l’arille des fruits du katemfe (Thaumatococcus daniellii). Deux autres protĂ©ines Ă©dulcorantes Ă  pouvoir sucrant Ă©levĂ©, la brazzĂ©ine des fruits de Pentadiplandra brazzeana et la monelline des fruits de Dioscoreophyllum cumminsii, sont Ă©galement disponibles, mais leur production industrielle n’est pas encore programmĂ©e. Bien qu’elles soient exprimĂ©es de façon constitutive dans les fruits, la plupart de ces protĂ©ines correspondent Ă  des protĂ©ines de dĂ©fense de la plante ou protĂ©ines PR, dont la synthĂšse est exacerbĂ©e lorsque la plante est en conditions de stress, lors d’une attaque fongique, par exemple. Les homologies de sĂ©quence, et surtout de structure, que ces protĂ©ines Ă©dulcorantes partagent avec des allergĂšnes avĂ©rĂ©s, avec Art v 1 pour la brazzĂ©ine, avec Mus a 4 ou Ole e 13 pour la thaumatine, avec Ana o 3 ou Pis v 1 pour la mabinline, avec l’inhibiteur de Kunitz du soja pour la monelline, suggĂšrent une possible allergĂ©nicitĂ© de ces protĂ©ines vĂ©gĂ©tales. NĂ©anmoins, leur potentiel allergĂ©nique reste Ă  dĂ©montrer lors de leur consommation alimentaire

    L’association Alt a 1 (Alternaria)–Act d 2 (kiwi) : origine et pertinence clinique possible

    No full text
    International audienceThe Alt a 1 allergen of Alternaria was reported recently to interact with the Act d 2 allergen which is found inside the pulp of kiwi fruit. This association is due to an as yet unknown interaction between these two allergens. Preceding to this interaction, Alt a 1 has to spread from the spores of Alternaria which were germinating on the surface of the fruit and then migrate into the pulp of the fruit where it associates with Act d 2. Such migration requires that Alt a 1 has the capacity to pass through the kiwi's exterior wall and then to pass through the plasma membrane of the pulp cells. To react with the kiwi's pulp cells, Alt a 1 enters the fruit via the lenticels that are scattered on its surface and then enters the pulp cells using plasma membrane protein transporters. Once inside these cells, Alt a 1 can associate with Act d 2 by means of electrostatic, hydrophilic and/or hydrophobic interactions, as suggested by in silico molecular docking experiments. In addition to this protein–protein interaction, the glycan moiety of N-glycosylated Alt a 1 could be recognized by the electro-negatively charged groove of Act d 2, resulting in an enhanced Alt a 1–Act d 2 association. As with kiwi fruit, Alt a 1 might associate with PR5 thaumatin-like proteins occurring in other fruits, such as cherry (Pru av 2), apple (Mal d 2), and banana (Mus a 4). The potential clinical relevance of this association is illustrated by the high frequency of cosensitizations observed between Act d 2 and Alt a 1 in ISAC microarray assays; up to 85% of patients sensitized to Act d 2 are also sensitized to Alt a 1. Conversely, only 39% of patients sensitized to Alt a 1 are also cosensitized to Act d 2.RĂ©cemment, l’association de l’allergĂšne Act d 2 du kiwi avec l’allergĂšne Alt a 1 d’Alternaria a Ă©tĂ© mise en Ă©vidence dans la pulpe du fruit. Cette association repose sur une interaction entre les deux allergĂšnes dont le mĂ©canisme reste encore mal connu. L’allergĂšne Alt a 1 diffuse Ă  partir de la paroi des spores d’Alternaria germant Ă  la surface du fruit, pour migrer dans la pulpe du fruit oĂč il s’associe avec Act d 2. Cette pĂ©nĂ©tration de l’allergĂšne dans le fruit implique nĂ©cessairement un franchissement des parois et des membranes cellulaires du fruit par l’allergĂšne. Alt a 1 emprunterait les lenticelles (stomates morts) pour franchir les parois cellulaires et des transporteurs membranaires spĂ©cifiques pour pĂ©nĂ©trer dans les cellules de la pulpe. L’association des deux allergĂšnes au sein de la pulpe s’effectuerait grĂące Ă  des interactions Ă©lectrostatiques, hydrophiles et hydrophobes comme le suggĂšrent des expĂ©riences d’ancrage molĂ©culaire in silico. Une reconnaissance des chaĂźnes glycaniques d’Alt a 1 par la crevasse catalytique d’Act d 2, pourrait Ă©galement intervenir dans cette association. D’autres fruits comme la banane ou la pomme, riches en protĂ©ines PR5 thaumatin-like, pourraient prĂ©senter ce type d’association. La pertinence clinique possible de cette association repose sur l’observation d’une frĂ©quence Ă©levĂ©e de cosensibilisations entre Act d 2 et Alt a 1 : 85 % des patients sensibilisĂ©s Ă  Act d 2 le sont Ă©galement Ă  Alt a 1. Par contre, seulement 39 % des patients sensibilisĂ©s Ă  Alt a 1 le sont Ă©galement Ă  Act d 2

    Molecular and Biochemical Analysis of the Estrogenic and Proliferative Properties of Vitamin E Compounds

    Get PDF
    International audienceTocols are vitamin E compounds that include tocopherols (TPs) and tocotrienols (TTs). These lipophilic compounds are phenolic antioxidants and are reportedly able to modulate estrogen receptor ÎČ (ERÎČ). We investigated the molecular determinants that control their estrogenicity and effects on the proliferation of breast cancer cells. Docking experiments highlighted the importance of the tocol phenolic groups for their interaction with the ERs. Binding experiments confirmed that they directly interact with both ERα and ERÎČ with their isoforms showing potencies in the following order: ÎŽ-tocols > γ-tocols > α-tocols. We also found that tocols activated the transcription of an estrogen-responsive reporter gene that had been stably transfected into cells expressing either ERα or ERÎČ. The role of the phenolic group in tocol-ER interaction was further established using ÎŽ-tocopherylquinone, the oxidized form of ÎŽ-TP, which had no ER affinity and did not induce ER-dependent transcriptional modulation. Tocol activity also required the AF1 transactivation domain of ER. We found that both ÎŽ-TP and ÎŽ-TT stimulated the expression of endogenous ER-dependent genes. However, whereas ÎŽ-TP induced the proliferation of ER-positive breast cancer cells but not ER-negative breast cancer cells, ÎŽ-TT inhibited the proliferation of both ER-positive and ER-negative breast cancer cells. These effects of ÎŽ-TT were found to act through the down regulation of HMG-CoA reductase (HMGR) activity, establishing that ERs are not involved in this effect. Altogether, these data show that the reduced form of ÎŽ-TP has estrogenic properties which are lost when it is oxidized, highlighting the importance of the redox status in its estrogenicity. Moreover, we have shown that ÎŽ-TT has antiproliferative effects on breast cancer cells independently of their ER status through the inhibition of HMGR. These data clearly show that TPs can be discriminated from TTs according to their structure

    Les allergĂšnes croisants des insectes comestibles

    No full text
    International audienceThe increasing production and consumption of insect proteins as substitutes for meat proteins in European countries raises the question of their safety in terms of risk of allergy, of bacteriological and parasitological infection, and of toxicological contamination. The close relationship between insects with other arthropods (schrimps, dust mites) suggests the occurrence of an allergenic risk associated to entomophagy. In this respect, a few cases of anaphylactic reactions following the consumption of edible insects have been reported in the literature. However, the responsible allergens still remain poorly investigated, like most of the other insect proteins. Potential allergens have been recently identified in various species of edible insects like the yellow mealworm (Tenebrio molitor) and the silkworm (Bombyx mori). These allergenic proteins have been identified owing to their IgE-binding cross-reactivity toward patient sera allergic to shrimps and dust mites. The IgE-binding cross-reacting allergens of edible insects essentially correspond to enzymes (α-amylase, arginine kinase, chitinase, glutathione-S-transferase, triose phosphate isomerase, trypsin), hĂŠmolyphatic proteins (hĂŠmocyanin, hexamerin), and muscle proteins (actin, sarcoplasmic Ca-binding protein, myosin, tropomyosin, troponin). All of these potential allergens consist of ubiquitous proteins sharing three-dimensional structures and functions, which have been readily conserved during the evolution of arthropods and molluscs. Accordingly, most of these conserved structures and functions also occur in the allergenic proteins of both the German (Blattella germanica) and American (Periplaneta americana) cockroaches. However, the occurrence of specific allergens in edible insects has been not yet reported.Le recours aux protĂ©ines d’insectes comme substituts des protĂ©ines d’origine animale dans l’alimentation commence Ă  s’intensifier dans plusieurs pays de l’Union europĂ©enne. La production (entomoculture) et la consommation (entomophagie) des insectes comestibles posent la question de leur innocuitĂ© en termes de risque allergique, microbiologique, parasitologique et toxicologique. La parentĂ© Ă©toite des insectes avec d’autres arthropodes (crustacĂ©s, acariens) suggĂšre l’existence d’un risque allergique associĂ© Ă  l’entomophagie, d’autant que des cas d’anaphylaxie consĂ©cutifs Ă  la consommation d’insectes ont Ă©tĂ© rapportĂ©s dans la littĂ©rature. Les allergĂšnes responsables sont encore mal connus, comme d’ailleurs les protĂ©ines des insectes dont la diversitĂ© reste Ă  analyser. Cependant, plusieurs allergĂšnes potentiels ont Ă©tĂ© identifiĂ©s dans diffĂ©rentes espĂšces d’insectes comestibles. Ceux du ver de farine (Tenebrio molitor) et du ver Ă  soie (Bombyx mori) ont Ă©tĂ© particuliĂšrement analysĂ©s. Ces allergĂšnes ont Ă©tĂ© identifiĂ©s Ă  l’aide de sĂ©rums de patients allergiques aux crustacĂ©s ou aux acariens. Ces allergĂšnes croisants correspondent essentiellement Ă  des enzymes (α-amylase, arginine kinase, chitinase, glutathion-S-transfĂ©rase, triose phosphate isomĂ©rase, trypsine), des protĂ©ines circulantes (hĂ©mocyanine, hexamĂ©rine) et des protĂ©ines musculaires (actine, sarcoplasmic Ca-binding protein, myosine, tropomyosine, troponine). Tous ces allergĂšnes sont des protĂ©ines ubiquitaires dont les structures et les fonctions ont Ă©tĂ© parfaitement conservĂ©es au cours de l’évolution des arthropodes et des mollusques. On les retrouve en particulier dans les allergĂšnes de contact des blattes EuropĂ©enne (Blattella germanica) et AmĂ©ricaine (Periplaneta americana). Par contre, l’existence d’allergĂšnes spĂ©cifiques des insectes comestibles n’a pas encore Ă©tĂ© rapportĂ©e
    corecore