3 research outputs found

    Complement activation and inhibition in wound healing

    Get PDF
    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required

    Maggot excretions affect the human complement system

    Full text link
    The complement system plays an important role in the activation of the inflammatory response to injury, although inappropriate complement activation (CA) can lead to severe tissue damage. Maggot therapy is successfully used to treat infected wounds. In this study, we hypothesized that maggot excretions/secretions influence CA in order to modulate the host's inflammatory response. Therefore, the effect of maggot excretions on CA was investigated in preoperatively and postoperatively obtained sera from patients. Our results show that maggot excretions reduce CA in healthy and postoperatively immune-activated human sera up to 99.9%, via all pathways. Maggot excretions do not specifically initiate or inhibit CA, but break down complement proteins C3 and C4 in a cation-independent manner and this effect proves to be temperature tolerant. This study indicates a CA-reducing substrate that is already successfully used in clinical practice and may explain part of the improved wound healing caused by maggot therapy. Furthermore, the complement activation-reducing substance present in maggot excretions could provide a novel treatment modality for several diseases, resulting from an (over)active complement system
    corecore