173 research outputs found

    Influence of Age, Heart Failure and ACE Inhibitor Treatment on Plasma Renin Activity in Children:Insights from a Systematic Review and the European LENA Project

    Get PDF
    BACKGROUND: Plasma renin activity (PRA) has gained relevance as prognostic marker in adults with heart failure. The use of PRA as a clinically meaningful parameter in children and children with heart failure requires a thorough knowledge of the factors that influence PRA to correctly assess PRA levels. We aim to evaluate the influence of age, heart failure and angiotensin-converting enzyme inhibitor (ACEi) on PRA levels in children. METHODS: We conducted a systematic literature search to identify studies on PRA levels in healthy children and in children with heart failure. In addition, we analysed PRA data measured before (n = 35, aged 25 days-2.1 years), 4 hours after (n = 34) and within the first 8 days of enalapril treatment (n = 29) in children with heart failure from the European project Labeling of Enalapril from Neonates up to Adolescents (LENA). RESULTS: Age has a profound effect on PRA levels in healthy children, as PRA levels in the literature are up to about 7 times higher in neonates than in older children. Children with heart failure younger than 6 months showed 3-4 times higher PRA levels than healthy peers in both the literature and the LENA studies. In the LENA studies, the ACEi enalapril significantly increased median predose PRA by a factor of 4.5 in children with heart failure after 4.7 ± 1.6 days of treatment (n = 29, p &lt; 0.01). Prior to treatment with enalapril, LENA subjects with symptomatic heart failure (Ross score ≄3) had a significantly higher PRA than LENA subjects with asymptomatic heart failure of comparable age (Ross score ≀2, p &lt; 0.05). CONCLUSIONS: Age, heart failure and ACEi treatment have a notable influence on PRA and must be considered when assessing PRA as a clinically meaningful parameter. CLINICAL TRIAL REGISTRATION: The trials are registered on the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu). TRIAL REGISTRATION NUMBERS: EudraCT 2015-002335-17, EudraCT 2015-002396-18.</p

    Influence of Age, Heart Failure and ACE Inhibitor Treatment on Plasma Renin Activity in Children:Insights from a Systematic Review and the European LENA Project

    Get PDF
    BACKGROUND: Plasma renin activity (PRA) has gained relevance as prognostic marker in adults with heart failure. The use of PRA as a clinically meaningful parameter in children and children with heart failure requires a thorough knowledge of the factors that influence PRA to correctly assess PRA levels. We aim to evaluate the influence of age, heart failure and angiotensin-converting enzyme inhibitor (ACEi) on PRA levels in children. METHODS: We conducted a systematic literature search to identify studies on PRA levels in healthy children and in children with heart failure. In addition, we analysed PRA data measured before (n = 35, aged 25 days-2.1 years), 4 hours after (n = 34) and within the first 8 days of enalapril treatment (n = 29) in children with heart failure from the European project Labeling of Enalapril from Neonates up to Adolescents (LENA). RESULTS: Age has a profound effect on PRA levels in healthy children, as PRA levels in the literature are up to about 7 times higher in neonates than in older children. Children with heart failure younger than 6 months showed 3-4 times higher PRA levels than healthy peers in both the literature and the LENA studies. In the LENA studies, the ACEi enalapril significantly increased median predose PRA by a factor of 4.5 in children with heart failure after 4.7 ± 1.6 days of treatment (n = 29, p &lt; 0.01). Prior to treatment with enalapril, LENA subjects with symptomatic heart failure (Ross score ≄3) had a significantly higher PRA than LENA subjects with asymptomatic heart failure of comparable age (Ross score ≀2, p &lt; 0.05). CONCLUSIONS: Age, heart failure and ACEi treatment have a notable influence on PRA and must be considered when assessing PRA as a clinically meaningful parameter. CLINICAL TRIAL REGISTRATION: The trials are registered on the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu). TRIAL REGISTRATION NUMBERS: EudraCT 2015-002335-17, EudraCT 2015-002396-18.</p

    Serum protein binding of 25 antiepileptic drugs in a routine clinical setting: A comparison of free non-protein-bound concentrations

    Get PDF
    Objective Given that only the free non–protein-bound concentration of an antiepileptic drug (AED) crosses the blood–brain barrier, entering the brain and producing an antiepileptic effect, knowledge and measurement of the free drug fraction is important. Such data are sparse, particularly for newer AEDs, and have arisen from the use of disparate methodologies and settings over the past six decades. We report on the protein binding of 25 AEDs that are available for clinical use, along with two pharmacologically active metabolites (carbamazepine-epoxide and N-desmethyl clobazam), using standardized methodology and under set conditions. Methods The protein binding of the various AEDs was undertaken in sera of 278 patients with epilepsy. Separation of the free non–protein-bound component was achieved by using ultracentrifugation (Amicon Centrifree Micropartition System) under set conditions: 500 ÎŒl serum volume; centrifugation at 1,000 g for 15 min, and at 25°C. Free and total AED concentrations were measured by use of fully validated liquid chromatography/mass spectroscopy (LC/MS) techniques. Results Gabapentin and pregabalin are non–protein-bound, whereas highly bound AEDs (≄88%) include clobazam, clonazepam, perampanel, retigabine, stiripentol, tiagabine, and valproic acid as well as the N-desmethyl-clobazam (89%) metabolite. The minimally bound drugs (<22%) include ethosuximide (21.8%), lacosamide (14.0%), levetiracetam (3.4%), topiramate, (19.5%) and vigabatrin (17.1%). Ten of the 25 AEDs exhibit moderate protein binding (mean range 27.7–74.8%). Significance These data provide a comprehensive comparison of serum protein binding of all available AEDs including the metabolites, carbamazepine-epoxide and N-desmethyl-clobazam. Knowledge of the free fraction of these AEDs can be used to optimize epilepsy treatment
    • 

    corecore