12,167 research outputs found
Public health training in Europe. Development of European masters degrees in public health.
BACKGROUND: Changing political and economic relations in Europe mean that there are new challenges for public health and public health training. There have been several attempts to develop training at the master's level in public health which is focused on meeting the new needs. These have failed due to being too inflexible to allow participation by schools of public health. METHODS: A project funded by the European Union involving public health trainers has developed a new approach which allows participating schools to retain their national differences and work within local rules and traditions, but which aims to introduce the European dimension into public health training. This paper reports the conclusions of this project. CONCLUSIONS: A network of schools wishing to develop European Master's degrees is being established and other schools offering good quality programmes will be able to join
A finite excluded volume bond-fluctuation model: Static properties of dense polymer melts revisited
The classical bond-fluctuation model (BFM) is an efficient lattice Monte
Carlo algorithm for coarse-grained polymer chains where each monomer occupies
exclusively a certain number of lattice sites. In this paper we propose a
generalization of the BFM where we relax this constraint and allow the overlap
of monomers subject to a finite energy penalty \overlap. This is done to vary
systematically the dimensionless compressibility of the solution in order
to investigate the influence of density fluctuations in dense polymer melts on
various s tatic properties at constant overall monomer density. The
compressibility is obtained directly from the low-wavevector limit of the
static structure fa ctor. We consider, e.g., the intrachain bond-bond
correlation function, , of two bonds separated by monomers along the
chain. It is shown that the excluded volume interactions are never fully
screened for very long chains. If distances smaller than the thermal blob size
are probed () the chains are swollen acc ording to the classical
Fixman expansion where, e.g., . More importantly, the
polymers behave on larger distances () like swollen chains of
incompressible blobs with P(s) \si m g^0s^{-3/2}.Comment: 46 pages, 12 figure
On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films
We present results from molecular dynamics simulations of strictly
two-dimensional (2D) polymer melts and thin polymer films in a slit geometry of
thickness of the order of the radius of gyration. We find that the dynamics of
the 2D melt is qualitatively different from that of the films. The 2D monomer
mean-square displacement shows a power law at intermediate times
instead of the law expected from Rouse theory for nonentangled
chains. In films of finite thickness, chain entanglements may occur. The impact
of confinement on the entanglement length has been analyzed by a
primitive path analysis. The analysis reveals that increases
strongly with decreasing film thickness.Comment: 6 pages, 3 figures, proceedings 3rd International Workshop on
Dynamics in Confinement (CONFIT 2006
Swift Pointing and the Association Between Gamma-Ray Bursts and Gravitational-Wave Bursts
The currently accepted model for gamma-ray burst phenomena involves the
violent formation of a rapidly rotating solar mass black hole. Gravitational
waves should be associated with the black-hole formation, and their detection
would permit this model to be tested, the black hole progenitor (e.g.,
coalescing binary or collapsing stellar core) identified, and the origin of the
gamma rays (within the expanding relativistic fireball or at the point of
impact on the interstellar medium) located. Even upper limits on the
gravitational-wave strength associated with gamma-ray bursts could constrain
the gamma-ray burst model. To do any of these requires joint observations of
gamma-ray burst events with gravitational and gamma-ray detectors. Here we
examine how the quality of an upper limit on the gravitational-wave strength
associated with gamma-ray burst observations depends on the relative
orientation of the gamma-ray-burst and gravitational-wave detectors, and apply
our results to the particular case of the Swift Burst-Alert Telescope (BAT) and
the LIGO gravitational-wave detectors. A result of this investigation is a
science-based ``figure of merit'' that can be used, together with other mission
constraints, to optimize the pointing of the Swift telescope for the detection
of gravitational waves associated with gamma-ray bursts.Comment: aastex, 14 pages, 2 figure
Non-extensivity of the chemical potential of polymer melts
Following Flory's ideality hypothesis the chemical potential of a test chain
of length immersed into a dense solution of chemically identical polymers
of length distribution P(N) is extensive in . We argue that an additional
contribution arises ( being the
monomer density) for all if which can be traced back to the
overall incompressibility of the solution leading to a long-range repulsion
between monomers. Focusing on Flory distributed melts we obtain for , hence,
if is similar to the typical
length of the bath . Similar results are obtained for monodisperse
solutions. Our perturbation calculations are checked numerically by analyzing
the annealed length distribution P(N) of linear equilibrium polymers generated
by Monte Carlo simulation of the bond-fluctuation model. As predicted we find,
e.g., the non-exponentiality parameter to decay
as for all moments of the distribution.Comment: 14 pages, 6 figures, submitted to EPJ
Can past gamma-ray bursts explain both INTEGRAL and ATIC/PAMELA/Fermi anomalies simultaneously?
Gamma-ray bursts (GRBs) have been invoked to explain both the 511 keV
emission from the galactic bulge and the high-energy positron excess inferred
from the ATIC, PAMELA, and Fermi data. While independent explanations can be
responsible for these phenomena, we explore the possibility of their common
GRB-related origin by modeling the GRB distribution and estimating the rates.
For an expected Milky Way long GRB rate, neither of the two signals is generic;
the local excess requires a 2% coincidence, while the signal from the galactic
center requires a 20% coincidence with respect to the timing of the latest GRB.
The simultaneous explanation requires a 0.4% coincidence. Considering the large
number of statistical "trials" created by multiple searches for new physics,
the coincidences of a few per cent cannot be dismissed as unlikely.
Alternatively, both phenomena can be explained by GRBs if the galactic rate is
higher than expected. We also show that a similar result is difficult to obtain
assuming a simplified short GRB distribution.Comment: 4 pages; version accepted for publicatio
The Expected Duration of Gamma-Ray Bursts in the Impulsive Hydrodynamic Models
Depending upon the various models and assumptions, the existing literature on
Gamma Ray Bursts (GRBs) mentions that the gross theoretical value of the
duration of the burst in the hydrodynamical models is tau~r^2/(eta^2 c), where
r is the radius at which the blastwave associated with the fireball (FB)
becomes radiative and sufficiently strong. Here eta = E/Mc^2, c is the speed of
light, E is initial lab frame energy of the FB, and M is the baryonic mass of
the same (Rees and Meszaros 1992). However, within the same basic framework,
some authors (like Katz and Piran) have given tau ~ r^2 /(eta c). We intend to
remove this confusion by considering this problem at a level deeper than what
has been considered so far. Our analysis shows that none of the previously
quoted expressions are exactly correct and in case the FB is produced
impulsively and the radiative processes responsible for the generation of the
GRB are sufficiently fast, its expected duration would be tau ~ar^2/(eta^2 c),
where a~O(10^1). We further discuss the probable change, if any, of this
expression, in case the FB propagates in an anisotropic fashion. We also
discuss some associated points in the context of the Meszaros and Rees
scenario.Comment: 21 pages, LATEX (AAMS4.STY -enclosed), 1 ps. Fig. Accepted in
Astrophysical Journa
Relativistic Jets from Collapsars
We have studied the relativistic beamed outflow proposed to occur in the
collapsar model of gamma-ray bursts. A jet forms as a consequence of an assumed
energy deposition of erg/s within a cone
around the rotation axis of the progenitor star. The generated jet flow is
strongly beamed (\la few degrees) and reaches the surface of the stellar
progenitor (r cm) intact. At break-out the maximum Lorentz
factor of the jet flow is about 33. Simulations have been performed with the
GENESIS multi-dimensional relativistic hydrodynamic code.Comment: 6 pages, 2 figures, to appear in the proceedings of the conference
"Godunov methods: theory and applications", Oxford, October 199
- …