7 research outputs found
WHO global research priorities for antimicrobial resistance in human health
The WHO research agenda for antimicrobial resistance (AMR) in human health has identified 40 research priorities to be addressed by the year 2030. These priorities focus on bacterial and fungal pathogens of crucial importance in addressing AMR, including drug-resistant pathogens causing tuberculosis. These research priorities encompass the entire people-centred journey, covering prevention, diagnosis, and treatment of antimicrobial-resistant infections, in addition to addressing the overarching knowledge gaps in AMR epidemiology, burden and drivers, policies and regulations, and awareness and education. The research priorities were identified through a multistage process, starting with a comprehensive scoping review of knowledge gaps, with expert inputs gathered through a survey and open call. The priority setting involved a rigorous modified Child Health and Nutrition Research Initiative approach, ensuring global representation and applicability of the findings. The ultimate goal of this research agenda is to encourage research and investment in the generation of evidence to better understand AMR dynamics and facilitate policy translation for reducing the burden and consequences of AMR
Soil and seedling response to dehydrated septic tank sludge versus forest floor additions at a disturbed site
Over a period of 2 yr, the effects of dehydrated septic tank sludge application on the chemical properties of a severely disturbed forest clayey soil were assessed and compared with application of native forest floor (i.e., from neighboring forest). Six treatments [fresh and mature sludges × two depths (15 and 25 cm), forest floor, and a control] were replicated three times according to a complete random design. Total organic C and N concentrations of amendments and their chemical structure, based on 13C nuclear magnetic resonance (NMR) spectroscopy, were determined. Mineral soil C and N concentrations and C mineralization rates were monitored as well as nutrient supply rates using Plant Root Simulator™ probes. White spruce [Picea glauca (Moench) Voss] seedling foliar nutrition and growth were also monitored. NMR spectroscopy revealed differences among amendments, with the forest floor spectra displaying lower O-alkyl C and higher alkyl C and carbonyl C proportions relative to sludge. Neither soil C concentrations nor mineralization were significantly improved in the mineral soil under any treatment, even at application rates exceeding 700 t sludge ha−1 (dry mass). The sludges supplied more NO3 and P, and less NH4 and K to the mineral soil than the forest floor and control. Increased nutrient availability under sludge and forest floor generally resulted in improved foliar nutrition and growth of white spruce seedlings. Despite differences in organic matter quality and mineral N form supplied by sludge and forest floor, sludge application is a valid restoration approach
Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea
The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more. © 2021 American Meteorological Societ