313 research outputs found
Impacts of renewable energy resources on effectiveness of gridâintegrated systems: succinct review of current challenges and potential solution strategies
This study is aimed at a succinct review of practical impacts of grid integration of renewable energy systems on effectiveness of power networks, as well as often employed stateâof-theâart solution strategies. The renewable energy resources focused on include solar energy, wind energy, biomass energy and geothermal energy, as well as renewable hydrogen/fuel cells, which, although not classified purely as renewable resources, are a famous energy carrier vital for future energy sustainability. Although several world energy outlooks have suggested that the renewable resources available worldwide are sufficient to satisfy global energy needs in multiples of thousands, the different challenges often associated with practical exploitation have made this assertion an illusion to date. Thus, more research efforts are required to synthesize the nature of these challenges as well as viable solution strategies, hence, the need for this review study. First, brief overviews are provided for each of the studied renewable energy sources. Next, challenges and solution strategies associated with each of them at generation phase are discussed, with reference to power grid integration. Thereafter, challenges and common solution strategies at the grid/electrical interface are discussed for each of the renewable resources. Finally, expert opinions are provided, comprising a number of aphorisms deducible from the review study, which reveal knowledge gaps in the field and potential roadmap for future research. In particular, these opinions include the essential roles that renewable hydrogen will play in future energy systems; the need for multiâsectoral coupling, specifically by promoting electric vehicle usage and integration with renewableâbased power grids; the need for cheaper energy storage devices, attainable possibly by using abandoned electric vehicle batteries for electrical storage, and by further development of advanced thermal energy storage systems (overviews of stateâofâtheâart thermal and electrochemical energy storage are also provided); amongst others
A simplified approach for energy system design in buildings and its application to a case study
The present study proposes an easy-to-use procedure for the preliminary design of energy systems for existing buildings based on easily available consumption data. The approach is then applied to a case study represented by the Rector's headquarter of the University of Cagliari. With the aim of analysing a complex case, the building has been chosen among those with unknown thermal and electrical load subdivision. The feasibility study and subsequent preliminary sizing of a Combined Heat and Power (CHP) system serving the building started through seasonal comparison of electricity consumption data, which also allowed for the subdivision of the building's electrical and thermal loads and the definition of the electrical base load. The design of the cogeneration system was conducted through the analysis of the electric and thermal demand of the building with quarter-hour resolution, compared among different seasons. The application of the model to the case study allowed for a preliminary design and techno-economic feasibility assessment of implementing a Combined Cooling, Heating and Power (CCHP) system. Besides highlighting the valuable insights that can be obtained through observation and analysis of energy power curves, this paper presents energy indicators that can be utilized to populate benchmarks' databases for comparable buildings
Performance Assessment of Low-Temperature A-CAES (Adiabatic Compressed Air Energy Storage) Plants
The widespread diffusion of renewable energy sources calls for the development of high-capacity energy storage systems as the A-CAES (Adiabatic Compressed Air Energy Storage) systems. In this framework, low temperature (100°Câ200°C) A-CAES (LT-ACAES) systems can assume a key role, avoiding some critical issues connected to the operation of high temperature ones. In this paper, two different LT-ACAES configurations are proposed. The two configurations are characterized by the same turbomachines and compressed air storage section, while differ in the TES section and its integration with the turbomachinery. In particular, the first configuration includes two separated cycles: the working fluid (air) cycle and the heat transfer fluid (HTF) cycle. Several heat exchangers connect the two cycles allowing to recover thermal energy from the compressors and to heat the compressed air at the turbine inlet. Two different HTFs were considered: air (case A) and thermal oil (case B). The second configuration is composed of only one cycle, where the operating fluid and the HTF are the same (air) and the TES section is composed of three different packed-bed thermal storage tanks (case C). The tanks directly recover the heat from the compressors and heat the air at each turbine inlet, avoiding the use of heat exchangers. The LT-ACAES systems were modelled and simulated using the ASPEN-Plus and the MATLAB-Simulink environments. The main aim of this study was the detailed analysis of the reciprocal influence between the turbomachinery and the TES system; furthermore, the performance evaluation of each plant was carried out assuming both on-design and off-design operating conditions. Finally, the different configurations were compared through the main performance parameters, such as the round-trip efficiency. A total power output of around 10 MW was set, leading to a TES tank volume ranging between 500 and 700 m3. The second configuration with three TES systems appears to be the most promising in terms of round-trip efficiency since the energy produced during the discharging phase is greater. In particular, the round-trip efficiency of the LT-ACAES ranges between 0.566 (case A) to 0.674 (case C). Although the second configuration assures the highest performance, the effect of operating at very high pressures inside the tanks should be carefully evaluated in terms of overall costs
Genetic diversity of the Ruditapes decussatus and evidence of its hybridization with the alien R. philippinarum in the Western Mediterranean Sea
The introduction of alien species in marine ecosystems is often driven by the increasing demand of fishery resources. This is the case of the Manila clam (R. R. philippinarum), ), imported in Europe from Japan since the 1970s, to meet the growing demand for clams that the native species, the grooved carpet shell clam ( Ruditapes decussatus), ), could not satisfy. Alien species introduction could threaten the genetic diversity and integrity of the native clam, also causing hybridization (i.e., gene flow from one species into the gene pool of another). Since R. philippinarum recently spread in a few important Mediterranean coastal areas, a combined approach based on morphological characteristics, length differences of two nuclear species-specific markers (ITS2, 5SrDNA) and the sequence of the mitochondrial gene cytochrome c oxidase subunit I (COI), was used to investigate the presence of hybrids in six Mediterranean wetlands (Sardinia, Italy). Eight individuals morphologically identified as R. decussatus were hybrids, having sequences specific to both R. decussatus and R. philippinarum in their nuclear DNA (ITS2 and 5SrDNA). Most of these individuals were found to be post-first generation (F1) hybrids indicating that F1-hybrids may be fertile. Secondly, to study the genetic diversity of R. decussatus in the Sardinian wetlands as well as in its whole distribution area, >380 new COI sequences from the eastern Atlantic Ocean and Mediterranean Sea were analysed along with those available from public databases. Mitochondrial COI data revealed variable haplotype and nucleotide diversities in different areas, which were not dependent on sample sizes. The aquaculture breeding activities and clam transplantation between different countries, along with the long pelagic larval dispersal and the commercial import of other bivalve species might have promoted gene exchange between different sites and thus higher diversity levels in a few wild populations. Our research, evaluating the genetic makeup of wild and hatchery stocks and clarifying the degree of hybridization, can contribute to develop further recommendations for conserving the genetic integrity of R. decussatus.
Pulmonary transit time as a marker of diastolic dysfunction in Takotsubo syndrome
AIM: To evaluate the pulmonary transit time (PTT) and its derived parameters using cardiac magnetic resonance imaging (CMRI) as markers of diastolic dysfunction in Takotsubo syndrome (TS) and its relationship with transthoracic echocardiography and CMRI parameters. MATERIALS AND METHODS: Twenty-two patients with TS, who exhibited diastolic dysfunction as assessed by transthoracic echocardiography, were enrolled retrospectively and the PTT, pulmonary transit time index (PTTI), and pulmonary blood volume index (PBVI) were evaluated using first-pass CMRI. PTT was calculated as the number of cardiac cycles required for a bolus of contrast agent to move from the right ventricle (RV) to the left ventricle (LV), whereas PTTI represents the PTT interval corrected for the heart rate. Finally, PBVI was calculated as the product of PTTI, and RV stroke volume indexed for body surface area. Normal references of PTT, PTTI, and PBVI were evaluated in a cohort of 20 age- and sex-matched healthy controls. RESULTS: Compared with healthy subjects, TS patients showed significantly higher PTT, PTTI, and PBVI (p=0.0001, p=0.0001, and p=0.002, respectively). Using multivariable logistic regression, PBVI provided the best differentiation between TS and controls (AUC 0.84). PBVI was significantly associated with the index of diastolic dysfunction and left atrial strain parameters. In addition, PBVI demonstrated a significant correlation with global T2 mapping (r=0,520, p=0,019). CONCLUSION: PTT and the derived parameters, as assessed using first-pass CMRI, are potential tools for assessing LV diastolic dysfunction in patients with TS
Influence of the technological process on the biochemical composition of fresh roe and bottarga from liza ramada and mugil cephalus
Bottarga is a high-priced delicacy with high nutritional value, and, in Italy, bottarga from mullets has been recognized to be a traditional food product. The flathead grey mullet Mugil cephalus and the thinlip grey mullet Liza ramada are the main cultured grey mullets in the Mediterranean Sea. In this study, fresh roe and bottarga from these two species were investigated to evaluate the influence of the technological process and the species on their biochemical composition and health advantages. The 1 h/200 g salting-out step did not increase the levels of NaCl in the bottarga, although it highly decreased the levels of some heavy metals like Cu and Al. Processing of fresh roe in bottarga led to an essential modification of the lipid fraction, following a general series of monousatturated fatty acid (MUFA)> poliunsutturated fatti acid (PUFA) > saturated fatty acid (SAFA) and an increase in both !3 and !6 in Liza ramada. Moreover, bottarga showed higher levels of squalene and cholesterol and an increased Essential Amino Acid/Total Amino Acid ratio (EAA/TAA) in both species. In addition to the nutritional benefits for the consumer, the process proposed in this study may represent a reliable tool for local producers to obtain a final bottarga with both a reproducible biochemical composition and organoleptic characteristics
The human carotid atherosclerotic plaque: an observational review of histological scoring systems
OBJECTIVE: The atherosclerotic plaque is a complex dynamic pathological lesion of the arterial wall, characterized by multiple elementary lesions of different diagnostic
and prognostic significance. Fibrous cap thickness, lipid necrotic core dimension, inflammation, intra-plaque hemorrhage (IPH), plaque
neovascularization and endothelial dysfunction
(erosions) are generally considered the most
relevant morphological details of plaque morphology. In this review, the most relevant features able to discriminate between stable and
vulnerable plaques at histological level are discussed.
SUBJECTS AND METHODS: Retrospectively, we have evaluated the laboratory results
from one hundred old histological samples from
patients treated with carotid endarterectomy.
These results were analyzed to assess elementary lesions that characterize stable and unstable plaques.
RESULTS: A thin fibrous cap (<65 micron),
loss of smooth muscle cells, collagen depletion,
a large lipid-rich necrotic core, infiltrating macrophages, IPH and intra-plaque vascularization
are identified as the most important risk factors
associated with plaque rupture.
CONCLUSIONS: Immunohistochemistry for
smooth muscle actin (smooth muscle cell marker) and for CD68 (marker of monocytes/macrophages) and glycophorin (marker of red blood
cells) are suggested as useful tools for an in
deep characterization of any carotid plaque and
for distinguishing plaque phenotypes at histology. Since patients with a carotid vulnerable
plaque are at higher risk of developing vulnerable plaques in other arteries as well, the definition of the vulnerability index is underlined, in
order to stratify patients at higher risk for undergoing cardiovascular events
CD44: A New Prognostic Marker in Colorectal Cancer?
Cluster of differentiation 44 (CD44) is a non-kinase cell surface glycoprotein. It is overexpressed in several cell types, including cancer stem cells (CSCs). Cells overexpressing CD44 exhibit several CSC traits, such as self-renewal, epithelialâmesenchymal transition (EMT) capability, and resistance to chemo- and radiotherapy. The role of CD44 in maintaining stemness and the CSC function in tumor progression is accomplished by binding to its main ligand, hyaluronan (HA). The HA-CD44 complex activates several signaling pathways that lead to cell proliferation, adhesion, migration, and invasion. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The different functional roles of CD44s and specific CD44v isoforms still need to be fully understood. The clinicopathological impact of CD44 and its isoforms in promoting tumorigenesis suggests that CD44 could be a molecular target for cancer therapy. Furthermore, the recent association observed between CD44 and KRAS-dependent carcinomas and the potential correlations between CD44 and tumor mutational burden (TMB) and microsatellite instability (MSI) open new research scenarios for developing new strategies in cancer treatment. This review summarises current research regarding the different CD44 isoform structures, their roles, and functions in supporting tumorigenesis and discusses its therapeutic implications
Combined COI barcode-based methods to avoid mislabelling of threatened species of deep-sea skates
Skates are characterised by conservative body morphology which hampers identification and leads to frequent taxonomic confusion and market mislabelling. Accurate specimen classification is crucial for reliable stock assessments and effective conservation plans, otherwise the risk of extinction could be unnoticed. The misclassification issue is evident for the genus Dipturus, distributed worldwide, from the continental shelf and slope to the deep sea. In this study, barcode cytochrome oxidase I gene (COI) sequences were used along with species delimitation and specimen assignment methods to improve taxonomy and zoogeography of species of conservation interest inhabiting the Atlantic Ocean and Mediterranean Sea. In this study, we provided new evidence of the occurence of D. nidarosiensis in the Central-Western Mediterranean Sea and the lack of Atlantic-Mediterranean genetic divergence. The Atlantic endangered species D. laevis and D. batis clustered together under the same molecular operational taxonomic unit (MOTU) with any delimitation methods used, while the assignment approach correctly discriminated specimens into the two species. These results provided evidence that the presence of the barcode gap is not an essential predictor of identification success, but the use of different approaches is crucially needed for specimen classification, especially when threshold- or tree-based methods result less powerful. The analyses also showed how different putative, vulnerable, species dwelling across South-Western Atlantic and South-Eastern Pacific are frequently misidentified in public sequence repositories. Our study emphasised the limits associated to public databases, highlighting the urgency to verify and implement the information deposited therein in order to guarantee accurate species identification and thus effective conservation measures for deep-sea skates
- âŠ