300 research outputs found

    The role of haptic feedback in video-Assisted thoracic surgery simulation training

    Get PDF
    technological advances on haptic devices, together with further studies focused on haptic feedback, be useful to develop efficient and effective training curricula and for establishing the value of simulators with haptic feedback in training and assessing thoracic surgical skills

    Comparison of multiple techniques for endobronchial ultrasound-transbronchial needle aspiration specimen preparation in a single institution experience.

    Get PDF
    The optimal method for specimen preparation of endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) is still controversial. This study aims to compare several techniques available for EBUS-TBNA specimen acquisition and processing, in order to identify the best performing technique. We retrospectively reviewed the data of 199 consecutive patients [male, 73%; median age, 64 years (IQR: 52-74 years)] undergoing EBUS-TBNA at our institution from 2012 through 2014 for diagnosis of hilar-mediastinal lymph node enlargement suspect of neoplastic (n=139) or granulomatous (n=60) disease. All procedures were performed by two experienced bronchoscopists, under conscious sedation and local anaesthesia, using 21/22-Gauge (G) needle, without rapid on-site evaluation (ROSE). Five specimen-processing techniques were used: cytology slides in 42 cases (21%); cell-block in 25 (13%); core-tissue in 60 (30%); combination of cytology slides and core-tissue in 51 (26%); combination of cytology slides and cell-block in 21 (10%). To assess the diagnostic accuracy of each tissue-processing technique we compared the EBUS-TBNA results to those obtained with surgical lymphadenectomy, or 1-year follow-up in non-operated patients. Diagnostic yield, accuracy and area under the curve (AUC) were as follows. Cytology slides: 81%, 80%, 0.90; cell-block: 48%, 33%, 0.67; core-tissue: 87%, 99%, 0.96; cytology slides + core-tissue: 80%, 100%, 1.00; cytology slides + cell-block: 86%, 100%, 1.00. Cytology slides and core-tissue method showed non-significantly different diagnostic yield (P=0.435) and AUC (P=0.152). In our single-institution experience, cytology slides and core-tissue preparations demonstrated high and similar diagnostic performance. Cytology slides combination with core-tissue or cell-block showed the highest performance, however these combination methods were more resource-consuming

    Interface engineering of ultrathin Cu(In,Ga)Se-2 solar cells on reflective back contacts

    Get PDF
    Cu(In,Ga)Se-2-based (CIGS) solar cells with ultrathin (<= 500 nm) absorber layers suffer from the low reflectivity of conventional Mo back contacts. Here, we design and investigate ohmic and reflective back contacts (RBC) made of multilayer stacks that are compatible with the direct deposition of CIGS at 500 degrees C and above. Diffusion mechanisms and reactions at each interface and in the CIGS layer are carefully analyzed by energy dispersive X-ray (EDX)/scanning transmission electron microscopy (STEM). It shows that the highly reflective silver mirror is efficiently encapsulated in ZnO:Al layers. The detrimental reaction between CIGS and the top In2O3:Sn (ITO) layer used for ohmic contact can be mitigated by adding a 3 nm thick Al2O3 layer and by decreasing the CIGS coevaporation temperature from 550 degrees C to 500 degrees C. It also improves the compositional grading of Ga toward the CIGS back interface, leading to increased open- circuit voltage and fill factor. The best ultrathin CIGS solar cell on RBC exhibits an efficiency of 13.5% (+1.0% as compared to our Mo reference) with a short-circuit current density of 28.9 mA/cm(2) (+2.6 mA/cm(2)) enabled by double-pass absorption in the 510 nm thick CIGS absorber. RBC are easy to fabricate and could benefit other photovoltaic devices that require highly reflective and conductive contacts subject to high temperature processes

    Experimental Observation of Flat Bands in One-Dimensional Chiral Magnonic Crystals

    Get PDF
    Spin waves represent the collective excitations of themagnetizationfield within a magnetic material, providing dispersion curves thatcan be manipulated by material design and external stimuli. Bulk andsurface spin waves can be excited in a thin film with positive ornegative group velocities and, by incorporating a symmetry-breakingmechanism, magnetochiral features arise. Here we study the band diagramof a chiral magnonic crystal consisting of a ferromagnetic film incorporatinga periodic Dzyaloshinskii-Moriya coupling via interfacial contactwith an array of heavy-metal nanowires. We provide experimental evidencefor a strong asymmetry of the spin wave amplitude induced by the modulatedinterfacial Dzyaloshinskii-Moriya interaction, which generatesa nonreciprocal propagation. Moreover, we observe the formation offlat spin-wave bands at low frequencies in the band diagram. Calculationsreveal that depending on the perpendicular anisotropy, the spin-wavelocalization associated with the flat modes occurs in the zones withor without Dzyaloshinskii-Moriya interaction

    Risk factors for endocrine complications in transfusion-dependent thalassemia patients on chelation therapy with deferasirox: a risk assessment study from a multicentre nation-wide cohort

    Get PDF
    Transfusion-dependent patients typically develop iron-induced cardiomyopathy, liver disease, and endocrine complications. We aimed to estimate the incidence of endocrine disorders in transfusion-dependent thalassemia (TDT) patients during long-term iron-chelation therapy with deferasirox (DFX).We developed a multicentre follow-up study of 426 TDT patients treated with once-daily DFX for a median duration of 8 years, up to 18.5 years. At baseline, 118, 121, and 187 patients had 0, 1, or ≥2 endocrine diseases respectively. 104 additional endocrine diseases were developed during the follow-up. The overall risk of developing a new endocrine complication within 5 years was 9.7% (95%CI=6.3-13.1). Multiple Cox regression analysis identified 3 key predictors: age showed a positive log-linear effect (adjusted HR for 50% increase=1.2, 95%CI=1.1-1.3, P=0.005), the serum concentration of thyrotropin (TSH) showed a positive linear effect (adjusted HR for 1 mIU/L increase=1.3, 95%CI=1.1-1.4, P

    Health information use by patients with systemic lupus erythematosus (SLE) pre and during the COVID-19 pandemic

    Get PDF
    Objective We conducted an international survey of patients with SLE to assess their access, preference and trust in various health information sources pre-COVID-19 and during the COVID-19 pandemic. Methods Patients with SLE were recruited from 18 observational cohorts, and patients self-reporting SLE were recruited through five advocacy organisations. Respondents completed an online survey from June 2020 to December 2021 regarding the sources of health information they accessed in the 12 months preceding (pre-11 March 2020) and during (post-11 March 2020) the pandemic. Multivariable logistic regressions assessed factors associated with accessing news and social media post-11 March 2020, and self-reporting negative impacts from health information accessed through these sources. Results Surveys were completed by 2111 respondents; 92.8% were female, 76.6% had postsecondary education, mean (SD) age was 48.8 (14.0) years. Lupus specialists and family physicians were the most preferred sources pre-11 March 2020 and post-11 March 2020, yet were accessed less frequently (specialists: 78.5% pre vs 70.2% post, difference -8.3%, 95% CI -10.2% to -6.5%; family physicians: 57.1% pre vs 50.0% post, difference -7.1%, 95% CI -9.2% to -5.0%), while news (53.2% pre vs 62.1% post, difference 8.9%, 95% CI 6.7% to 11.0%) and social media (38.2% pre vs 40.6% post, difference 2.4%, 95% CI 0.7% to 4.2%) were accessed more frequently post-11 March 2020 vs pre-11 March 2020. 17.2% of respondents reported negative impacts from information accessed through news/social media. Those outside Canada, older respondents or with postsecondary education were more likely to access news media. Those in Asia, Latin America or younger respondents were more likely to access social media. Those in Asia, older respondents, males or with postsecondary education in Canada, Asia or the USA were less likely to be negatively impacted. Conclusions Physicians, the most preferred and trusted sources, were accessed less frequently, while news and social media, less trusted sources, were accessed more frequently post-11 March 2020 vs pre-11 March 2020. Increasing accessibility to physicians, in person and virtually, may help reduce the consequences of accessing misinformation/disinformation

    A Conserved Requirement for fbxo7 during Male Germ Cell Cytoplasmic Remodelling

    Get PDF
    Fbxo7 is the substrate-recognition subunit of an SCF-type ubiquitin E3 ligase complex. It has physiologically important functions in regulating mitophagy, proteasome activity and the cell cycle in multiple cell types, like neurons, lymphocytes and erythrocytes. Here, we show that in addition to the previously known Parkinsonian and hematopoietic phenotypes, male mice with reduced Fbxo7 expression are sterile. In these males, despite successful meiosis, nuclear elongation and eviction of histones from chromatin, the developing spermatids are phagocytosed by Sertoli cells during late spermiogenesis, as the spermatids undergo cytoplasmic remodeling. Surprisingly, despite the loss of all germ cells, there was no evidence of the symplast formation and cell sloughing that is typically associated with spermatid death in other mouse sterility models, suggesting that novel cell death and/or cell disposal mechanisms may be engaged in Fbxo7 mutant males. Mutation of the Drosophila Fbxo7 ortholog, nutcracker (ntc) also leads to sterility with germ cell death during cytoplasmic remodeling, indicating that the requirement for Fbxo7 at this stage is conserved. The ntc phenotype was attributed to decreased levels of the proteasome regulator, DmPI31 and reduced proteasome activity. Consistent with the fly model, we observe a reduction in PI31 levels in mutant mice; however, there is no alteration in proteasome activity in whole mouse testes. Our results are consistent with findings that Fbxo7 regulates PI31 protein levels, and indicates that a defect at the late stages of spermiogenesis, possibly due to faulty spatial dynamics of proteasomes during cytoplasmic remodeling, may underlie the fertility phenotype in mice

    Modern MT: A New Open-Source Machine Translation Platform for the Translation Industry

    Get PDF
    Modern MT (www.modernmt.eu) is a three-year Horizon 2020 innovation action (2015–2017) to develop new open-source machine translation technology for use in translation production environments, both fully automatic and as a back-end in interactive post-editing scenarios. Led by Translated srl, the project consortium also includes the Fondazione Bruno Kessler (FBK), the University of Edinburgh, and TAUS B.V. Modern MT has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 645487 (call ICT-17-2014)

    Mode-matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Get PDF
    Boosting nonlinear frequency conversion in extremely confined volumes remains a key challenge in nano-optics, nanomedicine, photocatalysis, and background-free biosensing. To this aim, field enhancements in plasmonic nanostructures are often exploited to effectively compensate for the lack of phase-matching at the nanoscale. Second harmonic generation (SHG) is, however, strongly quenched by the high degree of symmetry in plasmonic materials at the atomic scale and in nanoantenna designs. Here, we devise a plasmonic nanoantenna lacking axial symmetry, which exhibits spatial and frequency mode overlap at both the excitation and the SHG wavelengths. The effective combination of these features in a single device allows obtaining unprecedented SHG conversion efficiency. Our results shed new light on the optimization of SHG at the nanoscale, paving the way to new classes of nanoscale coherent light sources and molecular sensing devices based on nonlinear plasmonic platforms.Comment: 14 pages, 4 figure
    corecore