67 research outputs found

    Low Penetrance, Broad Resistance, and Favorable Outcome of Interleukin 12 Receptor ÎČ1 Deficiency: Medical and Immunological Implications

    Get PDF
    The clinical phenotype of interleukin 12 receptor ÎČ1 chain (IL-12RÎČ1) deficiency and the function of human IL-12 in host defense remain largely unknown, due to the small number of patients reported. We now report 41 patients with complete IL-12RÎČ1 deficiency from 17 countries. The only opportunistic infections observed, in 34 patients, were of childhood onset and caused by weakly virulent Salmonella or Mycobacteria (Bacille Calmette-GuĂ©rin -BCG- and environmental Mycobacteria). Three patients had clinical tuberculosis, one of whom also had salmonellosis. Unlike salmonellosis, mycobacterial infections did not recur. BCG inoculation and BCG disease were both effective against subsequent environmental mycobacteriosis, but not against salmonellosis. Excluding the probands, seven of the 12 affected siblings have remained free of case-definition opportunistic infection. Finally, only five deaths occurred in childhood, and the remaining 36 patients are alive and well. Thus, a diagnosis of IL-12RÎČ1 deficiency should be considered in children with opportunistic mycobacteriosis or salmonellosis; healthy siblings of probands and selected cases of tuberculosis should also be investigated. The overall prognosis is good due to broad resistance to infection and the low penetrance and favorable outcome of infections. Unexpectedly, human IL-12 is redundant in protective immunity against most microorganisms other than Mycobacteria and Salmonella. Moreover, IL-12 is redundant for primary immunity to Mycobacteria and Salmonella in many individuals and for secondary immunity to Mycobacteria but not to Salmonella in most

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Get PDF
    Life-threatening "breakthrough" cases of critical COVID-19 are attributed to poor or waning antibody (Ab) response to SARS-CoV-2 vaccines in individuals already at risk. Preexisting auto-Abs neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; their contribution to hypoxemic breakthrough cases in vaccinated people is unknown. We studied a cohort of 48 individuals (aged 20 to 86 years) who received two doses of a messenger RNA (mRNA) vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Ab levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal Ab response to the vaccine. Among them, 10 (24%) had auto-Abs neutralizing type I IFNs (aged 43 to 86 years). Eight of these 10 patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, whereas two neutralized IFN-ω only. No patient neutralized IFN-ÎČ. Seven neutralized type I IFNs at 10 ng/ml and three at 100 pg/ml only. Seven patients neutralized SARS-CoV-2 D614G and Delta efficiently, whereas one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only type I IFNs at 100 pg/ml neutralized both D614G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating Abs capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a notable proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Activated phosphoinositide 3-kinase ÎŽ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity

    Get PDF
    Background: Activated phosphoinositide-3-kinase d syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. Objectives: This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain of-function (GOF) disease; and identify predictors of severity in APDS. Methods: Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. Results: The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. Conclusions: APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients. (J Allergy Clin Immunol 2023;152:984-96.

    Characterization of greater middle eastern genetic variation for enhanced disease gene discovery

    Get PDF
    The Greater Middle East (GME) has been a central hub of human migration and population admixture. The tradition of consanguinity, variably practiced in the Persian Gulf region, North Africa, and Central Asia1-3, has resulted in an elevated burden of recessive disease4. Here we generated a whole-exome GME variome from 1,111 unrelated subjects. We detected substantial diversity and admixture in continental and subregional populations, corresponding to several ancient founder populations with little evidence of bottlenecks. Measured consanguinity rates were an order of magnitude above those in other sampled populations, and the GME population exhibited an increased burden of runs of homozygosity (ROHs) but showed no evidence for reduced burden of deleterious variation due to classically theorized ‘genetic purging’. Applying this database to unsolved recessive conditions in the GME population reduced the number of potential disease-causing variants by four- to sevenfold. These results show variegated genetic architecture in GME populations and support future human genetic discoveries in Mendelian and population genetics

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Infection pulmonaire à mycobactérie non tuberculeuse sans conditions prédisposantes (étude de 10 malades adultes)

    No full text
    ST QUENTIN EN YVELINES-BU (782972101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Legionnaire's Disease in Compromised Hosts

    No full text
    International audienceLegionnaire's disease (LD) is mainly reported in apparently immunocompetent patients. Among them, risk factors include chronic lung disease and smoking. However, LD is also well reported among immunocompromised patients, particularly those treated with anti-tumor necrosis factor alpha therapy, patients with hematological malignancy, and transplant patients. This article discusses the available data on immunity against Legionella spp, epidemiology, clinical presentation, diagnosis, and treatment of LD in immunocompromised patients

    Importance of T Cells, Gamma Interferon, and Tumor Necrosis Factor in Immune Control of the Rapid Grower Mycobacterium abscessus in C57BL/6 Mice▿

    No full text
    Mycobacterium abscessus is an emerging rapidly growing mycobacterium that causes tuberculous-like lesions in humans. We studied the immune control of this organism in C57BL/6 mice challenged intravenously with 107 CFU. Bacteria were eliminated from both the spleen and the liver within 90 days, and liver histology showed organized granulomatous lesions. A T- and B-cell requirement was investigated by challenging Rag2−/−, Cd3ɛ−/−, and ÎŒMT−/− mice. Rag2−/− and Cd3ɛ−/− mice were significantly impaired in the ability to clear M. abscessus from the liver and spleen, and ÎŒMT−/− mice were significantly impaired in the ability to clear M. abscessus from the liver, suggesting that infection control was primarily T cell dependent in the spleen and both T and B cell dependent in the liver. The liver granulomatous response was similar to that of wild-type controls in ÎŒMT−/− mice but completely absent in Cd3ɛ−/− and Rag2−/− mice. We studied the involvement of gamma interferon (IFN-Îł) and tumor necrosis factor (TNF) by challenging C57BL/6 mice deficient in the IFN-Îł receptor (Ifngr1−/−) and in TNF (Tnf−/−). Ifngr1−/− mice were significantly impaired in M. abscessus control both in the spleen and in the liver, and granulomas were profoundly altered. The effect was even more substantial in Tnf−/− mice; they failed to control M. abscessus infection in the liver and died within 20 to 25 days after infection with many hepatic inflammatory foci and major lesions of ischemic necrosis in the liver and kidney. These features were not observed with the closely related species M. chelonae. T-cell immunity, IFN-Îł, and TNF are central factors for the control of M. abscessus in C57BL/6 mice, as they are for the control of pathogenic slowly growing mycobacteria
    • 

    corecore