297 research outputs found

    Predictors of New-Onset Atrial Fibrillation in Geriatric Trauma Patients

    Get PDF
    Geriatric patients (age \u3e65) comprise a growing segment of the trauma population. New-onset atrial fibrillation may occur after injury, complicating clinical management and resulting in significant morbidity and mortality. This study was undertaken to identify clinical and demographic factors associated with new-onset atrial fibrillation among geriatric trauma patients . Methods: In this case control study, eligible participants included admitted trauma patients age 65 and older who developed new-onset atrial fibrillation during the hospitalization. Controls were admitted trauma patients who were matched for age and injury severity score, who did not develop atrial fibrillation. We evaluated the associations between new-onset atrial fibrillation and clinical characteristics, including patient demographics, health behaviors, chronic medical conditions, and course of care. Results: Data were available for 63 cases and 25 controls. Patients who developed atrial fibrillation were more likely to be male, compared to controls (49% versus 24%; odds ratio 3.0[1.0, 8.9]). Other demographic and clinical factors were not associated with new-onset atrial fibrillation, including mechanism of injury, co-morbid medical conditions, drug or alcohol use, surgical procedures, and intravenous fluid administration. Conclusions: Male geriatric trauma patients were at higher risk for developing new-onset atrial fibrillation. Other demographic and clinical factors were not associated with new-onset atrial fibrillation. Competing Interests: The authors report no conflicts of interest

    The Cytotoxicity of the Ajoene Analogue BisPMB in WHCO1 Oesophageal Cancer Cells Is Mediated by CHOP/GADD153

    Get PDF
    Garlic is a food and medicinal plant that has been used in folk medicine since ancient times for its beneficial health effects, which include protection against cancer. Crushed garlic cloves contain an array of small sulfur-rich compounds such as ajoene. Ajoene is able to interfere with biological processes and is cytotoxic to cancer cells in the low micromolar range. BisPMB is a synthetic ajoene analogue that has been shown in our laboratory to have superior cytotoxicity to ajoene. In the current study we have performed a DNA microarray analysis of bisPMB-treated WHCO1 oesophageal cancer cells to identify pathways and processes that are affected by bisPMB. The most significantly enriched biological pathways as assessed by gene ontology, KEGG and ingenuity pathway analysis were those involving protein processing in the endoplasmic reticulum (ER) and the unfolded protein response. In support of these pathways, bisPMB was found to inhibit global protein synthesis and lead to increased levels of ubiquitinated proteins. BisPMB also induced alternate splicing of the transcription factor XBP-1; increased the expression of the ER stress sensor GRP78 and induced expression of the ER stress marker CHOP/GADD153. CHOP expression was found to be central to the cytotoxicity of bisPMB as its silencing with siRNA rendered the cells resistant to bisPMB. The MAPK proteins, JNK and ERK1/2 were activated following bisPMB treatment. However JNK activation was not critical in the cytotoxicity of bisPMB, and ERK1/2 activation was found to play a pro-survival role. Overall the ajoene analogue bisPMB appears to induce cytotoxicity in WHCO1 cells by activating the unfolded protein response through CHOP/GADD153.Peer reviewe

    Causal Effect of Genetic Variants Associated With Body Mass Index on Multiple Sclerosis Susceptibility.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesMultiple sclerosis (MS) is an autoimmune disease with both genetic and environmental risk factors. Recent studies indicate that childhood and adolescent obesity double the risk of MS, but this association may reflect unmeasured confounders rather than causal effects of obesity. We used separate-sample Mendelian randomization to estimate the causal effect of body mass index (BMI) on susceptibility to MS. Using data from non-Hispanic white members of the Kaiser Permanente Medical Care Plan of Northern California (KPNC) (2006-2014; 1,104 cases of MS and 10,536 controls) and a replication data set from Sweden (the Epidemiological Investigation of MS (EIMS) and the Genes and Environment in MS (GEMS) studies, 2005-2013; 5,133 MS cases and 4,718 controls), we constructed a weighted genetic risk score using 97 variants previously established to predict BMI. Results were adjusted for birth year, sex, education, smoking status, ancestry, and genetic predictors of MS. Estimates in KPNC and Swedish data sets suggested that higher genetically induced BMI predicted greater susceptibility to MS (odds ratio = 1.13, 95% confidence interval: 1.04, 1.22 for the KPNC sample; odds ratio = 1.09, 95% confidence interval: 1.03, 1.15 for the Swedish sample). Although the mechanism remains unclear, to our knowledge, these findings support a causal effect of increased BMI on susceptibility to MS for the first time, and they suggest a role for inflammatory pathways that characterize both obesity and the MS disease process.National Institute of Neurological Disorders and Stroke National Institute of Allergy and Infectious Diseases Robert Wood Johnson Foundation Wayne and Gladys Valley Foundation Ellison Medical Foundation AFA Foundation Knut and Alice Wallenberg Foundation Swedish Brain Foundation Margareta af Ugglas Foundation European Union Seventh Framework Programme NEURINOX Swedish Medical Research Council Swedish Research Council for Health, Working Life, and Welfare Biogen Inc Merck Serono Teva Neuroscience Sanofi Novartis Bayer Schering Pharma Swedish Research Council Swedish Childhood Diabetes Foundation Neurologiskt Handikappades Riksforbund Foundation Genzyme Merck Bioge

    New Models for Large Prospective Studies: Is There a Better Way?

    Get PDF
    Large prospective cohort studies are critical for identifying etiologic factors for disease, but they require substantial long-term research investment. Such studies can be conducted as multisite consortia of academic medical centers, combinations of smaller ongoing studies, or a single large site such as a dominant regional health-care provider. Still another strategy relies upon centralized conduct of most or all aspects, recruiting through multiple temporary assessment centers. This is the approach used by a large-scale national resource in the United Kingdom known as the “UK Biobank,” which completed recruitment/examination of 503,000 participants between 2007 and 2010 within budget and ahead of schedule. A key lesson from UK Biobank and similar studies is that large studies are not simply small studies made large but, rather, require fundamentally different approaches in which “process” expertise is as important as scientific rigor. Embedding recruitment in a structure that facilitates outcome determination, utilizing comprehensive and flexible information technology, automating biospecimen processing, ensuring broad consent, and establishing essentially autonomous leadership with appropriate oversight are all critical to success. Whether and how these approaches may be transportable to the United States remain to be explored, but their success in studies such as UK Biobank makes a compelling case for such explorations to begin

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load.

    Get PDF
    Mutations in the m.13094T>C MT-ND5 gene have been previously described in three cases of Leigh Syndrome (LS). In this retrospective, international cohort study we identified 20 clinically affected individuals (13 families) and four asymptomatic carriers. Ten patients were deceased at the time of analysis (median age of death was 10years (range: 5·4months-37years, IQR=17·9years). Nine patients manifested with LS, one with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and one with Leber hereditary optic neuropathy. The remaining nine patients presented with either overlapping syndromes or isolated neurological symptoms. Mitochondrial respiratory chain activity analysis was normal in five out of ten muscle biopsies. We confirmed maternal inheritance in six families, and demonstrated marked variability in tissue segregation, and phenotypic expression at relatively low blood mutant loads. Neuropathological studies of two patients manifesting with LS/MELAS showed prominent capillary proliferation, microvacuolation and severe neuronal cell loss in the brainstem and cerebellum, with conspicuous absence of basal ganglia involvement. These findings suggest that whole mtDNA genome sequencing should be considered in patients with suspected mitochondrial disease presenting with complex neurological manifestations, which would identify over 300 known pathogenic variants including the m.13094T>C
    corecore