1,238 research outputs found
Dense colloidal suspensions under time-dependent shear
We consider the nonlinear rheology of dense colloidal suspensions under a
time-dependent simple shear flow. Starting from the Smoluchowski equation for
interacting Brownian particles advected by shearing (ignoring fluctuations in
fluid velocity) we develop a formalism which enables the calculation of
time-dependent, far-from-equilibrium averages. Taking shear-stress as an
example we derive exactly a generalized Green-Kubo relation, and an equation of
motion for the transient density correlator, involving a three-time memory
function. Mode coupling approximations give a closed constitutive equation
yielding the time-dependent stress for arbitrary shear rate history. We solve
this equation numerically for the special case of a hard sphere glass subject
to step-strain.Comment: 4 page
Sensitivity of arrest in mode-coupling glasses to low-q structure
We quantify, within mode coupling theory, how changes in the liquid structure
affect that of the glass. Apart from the known sensitivity to the structure
factor at wavevectors around the first sharp diffraction peak , we
find a strong (and inverted) response to structure at wavevectors \emph{below}
this peak: an increase in {\em lowers} the degree of arrest over a
wide -range. This strong sensitivity to `caged cage' packing effects, on
length scales of order 2d, is much weaker in attractive glasses where
short-range bonding dominates the steric caging effect.Comment: 4 pages, 5 figures. v2: 3 figures replaced; text rewritte
Dilatancy, Jamming, and the Physics of Granulation
Granulation is a process whereby a dense colloidal suspension is converted
into pasty granules (surrounded by air) by application of shear. Central to the
stability of the granules is the capillary force arising from the interfacial
tension between solvent and air. This force appears capable of maintaining a
solvent granule in a jammed solid state, under conditions where the same amount
of solvent and colloid could also exist as a flowable droplet. We argue that in
the early stages of granulation the physics of dilatancy, which requires that a
powder expand on shearing, is converted by capillary forces into the physics of
arrest. Using a schematic model of colloidal arrest under stress, we speculate
upon various jamming and granulation scenarios. Some preliminary experimental
results on aspects of granulation in hard-sphere colloidal suspensions are also
reported.Comment: Original article intended for J Phys Cond Mat special issue on
Granular Materials (M Nicodemi, Ed.
Run-and-tumble particles with hydrodynamics: sedimentation, trapping and upstream swimming
We simulate by lattice Boltzmann the nonequilibrium steady states of
run-and-tumble particles (inspired by a minimal model of bacteria), interacting
by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic
interactions barely perturb the steady state found without them, but for
particles in a harmonic trap such a state is quite changed if the run length is
larger than the confinement length: a self-assembled pump is formed. Particles
likewise confined in a narrow channel show a generic upstream flux in
Poiseuille flow: chiral swimming is not required
Dynamics and Thermodynamics of the Glass Transition
The principal theme of this paper is that anomalously slow, super-Arrhenius
relaxations in glassy materials may be activated processes involving chains of
molecular displacements. As pointed out in a preceding paper with A. Lemaitre,
the entropy of critically long excitation chains can enable them to grow
without bound, thus activating stable thermal fluctuations in the local density
or molecular coordination of the material. I argue here that the intrinsic
molecular-scale disorder in a glass plays an essential role in determining the
activation rate for such chains, and show that a simple disorder-related
correction to the earlier theory recovers the Vogel-Fulcher law in three
dimensions. A key feature of this theory is that the spatial extent of
critically long excitation chains diverges at the Vogel-Fulcher temperature. I
speculate that this diverging length scale implies that, as the temperature
decreases, increasingly large regions of the system become frozen and do not
contribute to the configurational entropy, and thus ergodicity is partially
broken in the super-Arrhenius region above the Kauzmann temperature . This
partially broken ergodicity seems to explain the vanishing entropy at and
other observed relations between dynamics and thermodynamics at the glass
transition.Comment: 20 pages, no figures, some further revision
Computing the local pressure in molecular dynamics simulations
Computer simulations of inhomogeneous soft matter systems often require
accurate methods for computing the local pressure. We present a simple
derivation, based on the virial relation, of two equivalent expressions for the
local (atomistic) pressure in a molecular dynamics simulation. One of these
expressions, previously derived by other authors via a different route,
involves summation over interactions between particles within the region of
interest; the other involves summation over interactions across the boundary of
the region of interest. We illustrate our derivation using simulations of a
simple osmotic system; both expressions produce accurate results even when the
region of interest over which the pressure is measured is very small.Comment: 11 pages, 4 figure
A cluster mode-coupling approach to weak gelation in attractive colloids
Mode-coupling theory (MCT) predicts arrest of colloids in terms of their
volume fraction, and the range and depth of the interparticle attraction. We
discuss how effective values of these parameters evolve under cluster
aggregation. We argue that weak gelation in colloids can be idealized as a
two-stage ergodicity breaking: first at short scales (approximated by the bare
MCT) and then at larger scales (governed by MCT applied to clusters). The
competition between arrest and phase separation is considered in relation to
recent experiments. We predict a long-lived `semi-ergodic' phase of mobile
clusters, showing logarithmic relaxation close to the gel line.Comment: 4 pages, 3 figure
Velocity profiles in shear-banding wormlike micelles
Using Dynamic Light Scattering in heterodyne mode, we measure velocity
profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to
exhibit both shear-banding and stress plateau behavior. Our data provide
evidence for the simplest shear-banding scenario, according to which the
effective viscosity drop in the system is due to the nucleation and growth of a
highly sheared band in the gap, whose thickness linearly increases with the
imposed shear rate. We discuss various details of the velocity profiles in all
the regions of the flow curve and emphasize on the complex, non-Newtonian
nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow
The linear and non-linear dynamic response to an oscillatory shear flow of
giant wormlike micelles consisting of Pb-Peo block copolymers is studied by
means of Fourier transform rheology. Experiments are performed in the vicinity
of the isotropic-nematic phase transition concentration, where the location of
isotropic-nematic phase transition lines is determined independently. Strong
shear-thinning behaviour is observed due to critical slowing down of
orientational diffusion as a result of the vicinity of the isotropic- nematic
spinodal. This severe shear-thinning behaviour is shown to result in gradient
shear banding. Time-resolved Small angle neutron scattering experiments are
used to obtain insight in the microscopic phenomena that underly the observed
rheological response. An equation of motion for the order-parameter tensor and
an expression of the stress tensor in terms of the order-parameter tensor are
used to interpret the experimental data, both in the linear and non-linear
regime. Scaling of the dynamic behaviour of the orientational order parameter
and the stress is found when critical slowing down due to the vicinity of the
isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20
pages, 9 figure
Dynamic Response of Block Copolymer Wormlike Micelles to Shear Flow
The linear and non-linear dynamic response to an oscillatory shear flow of
giant wormlike micelles consisting of Pb-Peo block copolymers is studied by
means of Fourier transform rheology. Experiments are performed in the vicinity
of the isotropic-nematic phase transition concentration, where the location of
isotropic-nematic phase transition lines is determined independently. Strong
shear-thinning behaviour is observed due to critical slowing down of
orientational diffusion as a result of the vicinity of the isotropic- nematic
spinodal. This severe shear-thinning behaviour is shown to result in gradient
shear banding. Time-resolved Small angle neutron scattering experiments are
used to obtain insight in the microscopic phenomena that underly the observed
rheological response. An equation of motion for the order-parameter tensor and
an expression of the stress tensor in terms of the order-parameter tensor are
used to interpret the experimental data, both in the linear and non-linear
regime. Scaling of the dynamic behaviour of the orientational order parameter
and the stress is found when critical slowing down due to the vicinity of the
isotropic-nematic spinodal is accounted for.Comment: Accepted by J. Phys.: Condens. Matter, CODEF II Special Issue. 20
pages, 9 figure
- …