3,299 research outputs found

    The regulation of aromatase and androgen receptor expression during gonad development in male and female European eel

    Full text link
    [EN] This research investigated the regulation of aromatase and androgen receptor gene expression in the brain–pituitary– gonad (BPG) axis of male and female European eels (Anguilla anguilla) during induced sexual maturation. Complete A. anguilla aromatase (aa-cyp19a1) and partial androgen receptor a and b (aa-ara and aa-arb) sequences were isolated, and qPCR assays were validated and used for quantification of transcript levels for these three genes. Expression levels of the genes varied with sex, tissue and stage of maturation. aa-arb was expressed at higher levels than aa-ara in the pituitary and gonad in both sexes, suggesting aa-arb is the physiologically most important androgen receptor in these tissues. In the female brain, a decrease in aa-ara and an increase in aa-cyp19a1 were observed at the vitellogenic stage. In contrast, a progressive increase in all three genes was observed in the pituitary and ovaries throughout gonadal development, with aa-arb and aa-cyp19a1 reaching significantly higher levels at the vitellogenic stage. In the male pituitary, a decrease in aa-arb and an increase in aa-cyp19a1 were observed at the beginning of spermatogenesis, and thereafter remained low and high, respectively. In the testis, the transcript levels of androgen receptors and aa-cyp19a1 were higher during the early stages of spermatogenesis and decreased thereafter. These sex-dependent differences in the regulation of the expression of aa-ara, aa-arb and cyp19a1 are discussed in relation to the role of androgens and their potential aromatization in the European eel during gonadal maturationThis work was funded by the European Community's 7th Framework Programme under the Theme 2 'Food, Agriculture and Fisheries, and Biotechnology', grant agreement no 245257 (PRO-EEL). D. S. P. received a postdoc grant from UPV (CEI-01-10), a mobility grant from UPV (PAID-00-11) and has also been supported by a contract cofinanced by MICINN and UPV (PTA2011-4948-I). V. G. and I. M. received predoctoral grants from the Spanish Ministry of Science and Innovation (MICINN) and Generalitat Valenciana, respectively. F.-A. W. received funding from the Norwegian School of Veterinary Science. The fish farm Valenciana de Acuicultura, S. A. supplied the male eels used in the experiments. The English revision was carried out by Professor Lucy Robertson (Lucy Robertson Writing Services, Norway).Peñaranda, D.; Mazzeo, I.; Gallego Albiach, V.; Hildahl, J.; Nourizadeh-Lillabadi, R.; Pérez Igualada, LM.; Weltzien, FA.... (2014). The regulation of aromatase and androgen receptor expression during gonad development in male and female European eel. Reproduction in Domestic Animals. 49(3):512-521. https://doi.org/10.1111/rda.12321512521493Aroua, S., Weltzien, F.-A., Belle, N. L., & Dufour, S. (2007). Development of real-time RT-PCR assays for eel gonadotropins and their application to the comparison of in vivo and in vitro effects of sex steroids. General and Comparative Endocrinology, 153(1-3), 333-343. doi:10.1016/j.ygcen.2007.02.027Blázquez, M., & Piferrer, F. (2004). Cloning, sequence analysis, tissue distribution, and sex-specific expression of the neural form of P450 aromatase in juvenile sea bass (Dicentrarchus labrax). Molecular and Cellular Endocrinology, 219(1-2), 83-94. doi:10.1016/j.mce.2004.01.006Blázquez, M., & Piferrer, F. (2005). Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation. Molecular and Cellular Endocrinology, 237(1-2), 37-48. doi:10.1016/j.mce.2005.04.001Borg, B. (1994). Androgens in teleost fishes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 109(3), 219-245. doi:10.1016/0742-8413(94)00063-gChang, X. T., Kobayashi, T., Kajiura, H., Nakamura, M., & Nagahama, Y. (1997). Isolation and characterization of the cDNA encoding the tilapia (Oreochromis niloticus) cytochrome P450 aromatase (P450arom): changes in P450arom mRNA, protein and enzyme activity in ovarian follicles during oogenesis. Journal of Molecular Endocrinology, 18(1), 57-66. doi:10.1677/jme.0.0180057Choi, J. Y., Park, J. G., Jeong, H. B., Lee, Y. D., Takemura, A., & Kim, S. J. (2005). Molecular cloning of cytochrome P450 aromatases in the protogynous wrasse, Halichoeres tenuispinis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 141(1), 49-59. doi:10.1016/j.cbpc.2005.01.009Diotel, N., Page, Y. L., Mouriec, K., Tong, S.-K., Pellegrini, E., Vaillant, C., … Kah, O. (2010). Aromatase in the brain of teleost fish: Expression, regulation and putative functions. Frontiers in Neuroendocrinology, 31(2), 172-192. doi:10.1016/j.yfrne.2010.01.003Dufour, S., Lopez, E., Le Menn, F., Le Belle, N., Baloche, S., & Fontaine, Y. A. (1988). Stimulation of gonadotropin release and of ovarian development, by the administration of a gonadoliberin agonist and of dopamine antagonists, in female silver eel pretreated with estradiol. General and Comparative Endocrinology, 70(1), 20-30. doi:10.1016/0016-6480(88)90090-1Dufour, S., Sebert, M.-E., Weltzien, F.-A., Rousseau, K., & Pasqualini, C. (2010). Neuroendocrine control by dopamine of teleost reproduction. Journal of Fish Biology, 76(1), 129-160. doi:10.1111/j.1095-8649.2009.02499.xGelinas, D., A. Pitoc, G., & V. Callard, G. (1998). Isolation of a goldfish brain cytochrome P450 aromatase cDNA: Molecular and Cellular Endocrinology, 138(1-2), 81-93. doi:10.1016/s0303-7207(98)00015-xHarada, N. (1988). Cloning of a complete cDNA encoding human aromatase : Immunochemical identification and sequence analysis. Biochemical and Biophysical Research Communications, 156(2), 725-732. doi:10.1016/s0006-291x(88)80903-3Harbott, L. K., Burmeister, S. S., White, R. B., Vagell, M., & Fernald, R. D. (2007). Androgen receptors in a cichlid fish,Astatotilapia burtoni: Structure, localization, and expression levels. The Journal of Comparative Neurology, 504(1), 57-73. doi:10.1002/cne.21435Henkel, C. V., Burgerhout, E., de Wijze, D. L., Dirks, R. P., Minegishi, Y., Jansen, H. J., … van den Thillart, G. E. E. J. M. (2012). Primitive Duplicate Hox Clusters in the European Eel’s Genome. PLoS ONE, 7(2), e32231. doi:10.1371/journal.pone.0032231Hildahl, J., Sandvik, G. K., Edvardsen, R. B., Fagernes, C., Norberg, B., Haug, T. M., & Weltzien, F.-A. (2011). Identification and gene expression analysis of three GnRH genes in female Atlantic cod during puberty provides insight into GnRH variant gene loss in fish. General and Comparative Endocrinology, 172(3), 458-467. doi:10.1016/j.ygcen.2011.04.010Ijiri, S., Kazeto, Y., Mark Lokman, P., Adachi, S., & Yamauchi, K. (2003). Characterization of a cDNA Encoding P-450 aromatase (CYP19) from Japanese eel ovary and its expression in ovarian follicles during induced ovarian development. General and Comparative Endocrinology, 130(2), 193-203. doi:10.1016/s0016-6480(02)00589-0Ikeuchi, T., Todo, T., Kobayashi, T., & Nagahama, Y. (1999). cDNA Cloning of a Novel Androgen Receptor Subtype. Journal of Biological Chemistry, 274(36), 25205-25209. doi:10.1074/jbc.274.36.25205Ikeuchi, T., Todo, T., Kobayashi, T., & Nagahama, Y. (2001). Two subtypes of androgen and progestogen receptors in fish testes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(2-3), 449-455. doi:10.1016/s1096-4959(01)00375-xJeng, S.-R., Dufour, S., & Chang, C.-F. (2005). Differential expression of neural and gonadal aromatase enzymatic activities in relation to gonadal development in Japanese eel,Anguilla japonica. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303A(9), 802-812. doi:10.1002/jez.a.194Kazeto, Y., Tosaka, R., Matsubara, H., Ijiri, S., & Adachi, S. (2011). Ovarian steroidogenesis and the role of sex steroid hormones on ovarian growth and maturation of the Japanese eel. The Journal of Steroid Biochemistry and Molecular Biology, 127(3-5), 149-154. doi:10.1016/j.jsbmb.2011.03.013Khan, I. A., Lopez, E., & Leloup-Hâtey, J. (1987). Induction of spermatogenesis and spermiation by a single injection of human chorionic gonadotropin in intact and hypophysectomized immature European eel (Anguilla anguilla L.). General and Comparative Endocrinology, 68(1), 91-103. doi:10.1016/0016-6480(87)90064-5Kishida, M., & Callard, G. V. (2001). Distinct Cytochrome P450 Aromatase Isoforms in Zebrafish (Danio rerio) Brain and Ovary Are Differentially Programmed and Estrogen Regulated during Early Development**This research was supported by grants from the National Science Foundation (IBN-96-05053) and the NIH (P42 ES-07381). The nucleotide sequences reported in this paper have been submitted to the GenBank/EMBL Data Bank with accession numbers AF226619 and AF226620. Endocrinology, 142(2), 740-750. doi:10.1210/endo.142.2.7928Kwon, J. Y., McAndrew, B. J., & Penman, D. J. (2001). Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapiaOreochromis niloticus. Molecular Reproduction and Development, 59(4), 359-370. doi:10.1002/mrd.1042Levavi-Sivan, B., Biran, J., & Fireman, E. (2006). Sex Steroids Are Involved in the Regulation of Gonadotropin-Releasing Hormone and Dopamine D2 Receptors in Female Tilapia Pituitary1. Biology of Reproduction, 75(4), 642-650. doi:10.1095/biolreprod.106.051540Lin, C.-J., Wu, G.-C., Lee, M.-F., Lau, E.-L., Dufour, S., & Chang, C.-F. (2010). Regulation of two forms of gonadotropin-releasing hormone receptor gene expression in the protandrous black porgy fish, Acanthopagrus schlegeli. Molecular and Cellular Endocrinology, 323(2), 137-146. doi:10.1016/j.mce.2010.04.003Liu, X., Su, H., Zhu, P., Zhang, Y., Huang, J., & Lin, H. (2009). Molecular cloning, characterization and expression pattern of androgen receptor in Spinibarbus denticulatus. General and Comparative Endocrinology, 160(1), 93-101. doi:10.1016/j.ygcen.2008.10.026Lokman, P. M., George, K. A. N., & Young, G. (2003). Effects of steroid and peptide hormones on in vitro growth of previtellogenic oocytes from eel, Anguilla australis. Fish Physiology and Biochemistry, 28(1-4), 283-285. doi:10.1023/b:fish.0000030556.34592.41Lokman, P. M., George, K. A. N., Divers, S. L., Algie, M., & Young, G. (2007). 11-Ketotestosterone and IGF-I increase the size of previtellogenic oocytes from shortfinned eel, Anguilla australis, in vitro. Reproduction, 133(5), 955-967. doi:10.1530/rep-06-0229MATSUBARA, H., KAZETO, Y., IJIRI, S., HIRAI, T., ADACHI, S., & YAMAUCHI, K. (2003). Changes in mRNA levels of ovarian steroidogenic enzymes during artificial maturation of Japanese eel Anguilla japonica. Fisheries Science, 69(5), 979-988. doi:10.1046/j.1444-2906.2003.00716.xMatsubara, M., Lokman, P. M., Senaha, A., Kazeto, Y., Ijiri, S., Kambegawa, A., … Yamauchi, K. (2003). Synthesis and possible function of 11-ketotestosterone during oogenesis in eel (Anguilla spp.). Fish Physiology and Biochemistry, 28(1-4), 353-354. doi:10.1023/b:fish.0000030585.22093.7aMazzeo, I., Peñaranda, D. S., Gallego, V., Hildahl, J., Nourizadeh-Lillabadi, R., Asturiano, J. F., … Weltzien, F.-A. (2012). Variations in the gene expression of zona pellucida proteins, zpb and zpc, in female European eel (Anguilla anguilla) during induced sexual maturation. General and Comparative Endocrinology, 178(2), 338-346. doi:10.1016/j.ygcen.2012.06.003Miura, T., Yamauchi, K., Takahashi, H., & Nagahama, Y. (1991). Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proceedings of the National Academy of Sciences, 88(13), 5774-5778. doi:10.1073/pnas.88.13.5774Miura, T., Miura, C., Ohta, T., Nader, M. R., Todo, T., & Yamauchi, K. (1999). Estradiol-17β Stimulates the Renewal of Spermatogonial Stem Cells in Males. Biochemical and Biophysical Research Communications, 264(1), 230-234. doi:10.1006/bbrc.1999.1494Montero, M., Le Belle, N., King, J. A., Millar, R. P., & Dufour, S. (1995). Differential Regulation of the Two Forms of Gonadotropin-Releasing Hormone (mGnRH and cGnRH-II) by Sex Steroids in the European Female Silver Eel (Anguilla anguilla). Neuroendocrinology, 61(5), 525-535. doi:10.1159/000126876Montero, M., Le Belle, N., Vidal, B., & Dufour, S. (1996). Primary Cultures of Dispersed Pituitary Cells from Estradiol-Pretreated Female Silver Eels (Anguilla anguillaL.): Immunocytochemical Characterization of Gonadotropic Cells and Stimulation of Gonadotropin Release. General and Comparative Endocrinology, 104(1), 103-115. doi:10.1006/gcen.1996.0146Rout, U. K., Saed, G. M., & Diamond, M. P. (2005). Reproductive Biology and Endocrinology, 3(1), 1. doi:10.1186/1477-7827-3-1Pasqualini, C., Weltzien, F.-A., Vidal, B., Baloche, S., Rouget, C., Gilles, N., … Dufour, S. (2009). Two Distinct Dopamine D2 Receptor Genes in the European Eel: Molecular Characterization, Tissue-Specific Transcription, and Regulation by Sex Steroids. Endocrinology, 150(3), 1377-1392. doi:10.1210/en.2008-0578Peñaranda, D. S., Pérez, L., Gallego, V., Jover, M., Tveiten, H., Baloche, S., … Asturiano, J. F. (2010). Molecular and physiological study of the artificial maturation process in European eel males: From brain to testis. General and Comparative Endocrinology, 166(1), 160-171. doi:10.1016/j.ygcen.2009.08.006Peñaranda, D. S., Mazzeo, I., Hildahl, J., Gallego, V., Nourizadeh-Lillabadi, R., Pérez, L., … Weltzien, F.-A. (2013). Molecular characterization of three GnRH receptor paralogs in the European eel, Anguilla anguilla: Tissue-distribution and changes in transcript abundance during artificially induced sexual development. Molecular and Cellular Endocrinology, 369(1-2), 1-14. doi:10.1016/j.mce.2013.01.025Perez, L., Aturiano, J. F., Tomas, A., Zegrari, S., Barrera, R., Espinos, F. J., … Jover, M. (2000). Induction of maturation and spermiation in the male European eel: assessment of sperm quality throughout treatment. Journal of Fish Biology, 57(6), 1488-1504. doi:10.1111/j.1095-8649.2000.tb02227.xPérez, L., Peñaranda, D. S., Dufour, S., Baloche, S., Palstra, A. P., Van Den Thillart, G. E. E. J. M., & Asturiano, J. F. (2011). Influence of temperature regime on endocrine parameters and vitellogenesis during experimental maturation of European eel (Anguilla anguilla) females. General and Comparative Endocrinology, 174(1), 51-59. doi:10.1016/j.ygcen.2011.08.009Pfaffl, M. W., Tichopad, A., Prgomet, C., & Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters, 26(6), 509-515. doi:10.1023/b:bile.0000019559.84305.47Sperry, T. S., & Thomas, P. (1999). Characterization of Two Nuclear Androgen Receptors in Atlantic Croaker: Comparison of Their Biochemical Properties and Binding Specificities*. Endocrinology, 140(4), 1602-1611. doi:10.1210/endo.140.4.6631Sperry, T. S., & Thomas, P. (1999). Identification of Two Nuclear Androgen Receptors in Kelp Bass (Paralabrax clathratus) and Their Binding Affinities for Xenobiotics: Comparison with Atlantic Croaker (Micropogonias undulatus) Androgen Receptors1. Biology of Reproduction, 61(4), 1152-1161. doi:10.1095/biolreprod61.4.1152Todo, T., Ikeuchi, T., Kobayashi, T., & Nagahama, Y. (1999). Fish Androgen Receptor: cDNA Cloning, Steroid Activation of Transcription in Transfected Mammalian Cells, and Tissue mRNA Levels. Biochemical and Biophysical Research Communications, 254(2), 378-383. doi:10.1006/bbrc.1998.9919Tosaka, R., Todo, T., Kazeto, Y., Mark Lokman, P., Ijiri, S., Adachi, S., & Yamauchi, K. (2010). Expression of androgen receptor mRNA in the ovary of Japanese eel, Anguilla japonica, during artificially induced ovarian development. General and Comparative Endocrinology, 168(3), 424-430. doi:10.1016/j.ygcen.2010.05.005Trudeau, V. L., Peter, R. E., & Sloley, B. D. (1991). Testosterone and Estradiol Potentiate the Serum Gonadotropin Response to Gonadotropin-Releasing Hormone in Goldfish1. Biology of Reproduction, 44(6), 951-960. doi:10.1095/biolreprod44.6.951Tzchori, I., Degani, G., Hurvitz, A., & Moav, B. (2004). Cloning and developmental expression of the cytochrome P450 aromatase gene (CYP19) in the European eel (Anguilla anguilla). General and Comparative Endocrinology, 138(3), 271-280. doi:10.1016/j.ygcen.2004.06.007Vidal, B., Pasqualini, C., Le Belle, N., Holland, M. C. H., Sbaihi, M., Vernier, P., … Dufour, S. (2004). Dopamine Inhibits Luteinizing Hormone Synthesis and Release in the Juvenile European Eel: A Neuroendocrine Lock for the Onset of Puberty1. Biology of Reproduction, 71(5), 1491-1500. doi:10.1095/biolreprod.104.030627Weltzien, F.-A., Pasqualini, C., Vernier, P., & Dufour, S. (2005). A quantitative real-time RT-PCR assay for European eel tyrosine hydroxylase. General and Comparative Endocrinology, 142(1-2), 134-142. doi:10.1016/j.ygcen.2004.12.019Weltzien, F.-A., Pasqualini, C., Sébert, M.-E., Vidal, B., Le Belle, N., Kah, O., … Dufour, S. (2006). Androgen-Dependent Stimulation of Brain Dopaminergic Systems in the Female European Eel (Anguilla anguilla). Endocrinology, 147(6), 2964-2973. doi:10.1210/en.2005-147

    Awards of Attorney\u27s Fees in the Federal Courts

    Get PDF

    Rosen's (M,R) system in Unified Modelling Language

    Get PDF
    Robert Rosen's (M,R) system is an abstract biological network architecture that is allegedly non-computable on a Turing machine. If (M,R) is truly non-computable, there are serious implications for the modelling of large biological networks in computer software. A body of work has now accumulated addressing Rosen's claim concerning (M,R) by attempting to instantiate it in various software systems. However, a conclusive refutation has remained elusive, principally since none of the attempts to date have unambiguously avoided the critique that they have altered the properties of (M,R) in the coding process, producing merely approximate simulations of (M,R) rather than true computational models. In this paper, we use the Unified Modelling Language (UML), a diagrammatic notation standard, to express (M,R) as a system of objects having attributes, functions and relations. We believe that this instantiates (M,R) in such a way than none of the original properties of the system are corrupted in the process. Crucially, we demonstrate that (M,R) as classically represented in the relational biology literature is implicitly a UML communication diagram. Furthermore, since UML is formally compatible with object-oriented computing languages, instantiation of (M,R) in UML strongly implies its computability in object-oriented coding languages

    Foundations in Wisconsin: A Directory [32nd ed. 2013]

    Get PDF
    The 2013 edition of Foundations in Wisconsin marks the 32nd production of the print directory and the 13th year of the online version. The directory is designed as a research tool for grantseekers interested in locating information on private, corporate, and community foundations registered in Wisconsin. Each entry in this new edition has been updated or reviewed to provide the most current information available. Most of the data was drawn from IRS 990-PF tax returns filed by the foundations. Additional information was obtained from surveys, foundation websites, annual reports, and newsletters.https://epublications.marquette.edu/lib_fiw/1011/thumbnail.jp

    Foundations in Wisconsin: A Directory [28th ed. 2009]

    Get PDF
    The 2009 edition of Foundations in Wisconsin marks the 28th production of the print directory and the 9th year of the online version. The directory is designed as a research tool for grantseekers interested in locating information on private, corporate, and community foundations registered in Wisconsin. Each entry in this new edition has been updated or reviewed to provide the most current information available. Most of the data was drawn from IRS 990-PF tax returns filed by the foundations. However, additional information was obtained from surveys, foundation Web sites, annual reports, and newsletters. Wisconsin foundations have continued to grow in key areas even with the economic downturn. Active grantmaking foundations now number 1,286, with 54 new foundations identified. Total grants increased to an all-time high of 507million,a7507 million, a 7% increase over last year. Not surprisingly though, the depressed economy did affect the total assets which decreased by 6% to 6.8 billion.https://epublications.marquette.edu/lib_fiw/1000/thumbnail.jp

    Foundations in Wisconsin: A Directory [35th ed. 2016]

    Get PDF
    The 2016 release of Foundations in Wisconsin marks the 35th edition of the print directory and the 16th edition of the online version. The directory is designed as a research tool for grantseekers interested in locating information on private, corporate, and community foundations registered in Wisconsin. Each entry in this new edition has been updated or reviewed to provide the most current information available. Most of the data was drawn from IRS 990-PF tax returns filed by the foundations. Additional information was obtained from surveys, foundation websites, and annual reports. This edition paints a very positive picture of financial growth for Wisconsin foundations. Both grant and asset totals have risen to all-time highs. Of particular note, total grants broke the 600millionbarrier,increasingby8600 million barrier, increasing by 8% to 623 million. Additionally, 58 new foundations have been identified this year. (See page 269 for the complete list.) The following table illustrates the 10-year financial pattern as documented in Foundations in Wisconsin.https://epublications.marquette.edu/lib_fiw/1014/thumbnail.jp

    Overexpression of the nitroreductase NfsB in an E. coli strain as a whole-cell biocatalyst for the production of chlorinated analogues of the natural herbicide DIBOA

    Get PDF
    Los ácidos benzohidroxámicos, como el DIBOA (2,4-dihidroxi-2 H)-1,4-benzoxazin-3(4 H)-ona), son productos vegetales que presentan interesantes propiedades herbicidas, fungicidas y bactericidas. Una alternativa viable a su purificación a partir de fuentes naturales es la síntesis de compuestos análogos como el D-DIBOA (2-deoxi-DIBOA) y sus derivados clorados. Su síntesis química se ha simplificado en dos pasos. Sin embargo, el segundo paso es una reacción exotérmica e implica la liberación de hidrógeno, lo que hace que esta metodología sea cara y difícil de ampliar. En el presente estudio se estudia la posibilidad de producir los derivados clorados de las benzoxazinonas mediante un proceso biocatalítico in vivo que utiliza la capacidad de la cepa de E. coli nfsB-/pBAD-NfsB modificada para catalizar la síntesis de 6-Cl- D-DIBOA y 8-Cl- D-DIBOA a partir de sus respectivos precursores (PCs). Los resultados muestran que esta cepa es capaz de crecer en medios que contienen estos compuestos y producir el producto de biotransformación con unos rendimientos del 59,3% y el 46,7%. respectivamente. Además, la cepa es capaz de procesarel precursor (PC) no purificados del primer paso químico para obtener rendimientos similares a los obtenidos a partir del PC purificado. Se estudió la cinética de la reacción in in vitro con la nitrorreductasa NfsB recombinante purificada para caracterizar la catálisis y evaluar los efectos que varios componentes del precursor no purificado tiene durante el proceso de síntesis. Los resultados revelaron que la cinética es la de una enzima alostérica. El efecto inhibitorio del sustrato en el primer paso de la síntesis química, se encuentra también en algunas etapas previas a la purificación del precursor

    Foundations in Wisconsin: A Directory [30th ed. 2011]

    Get PDF
    The 2011 edition of Foundations in Wisconsin marks the 30th production of the print directory and the 11th year of the online version (www.wifoundations.org). The directory is designed as a research tool for grantseekers interested in locating information on private, corporate, and community foundations registered in Wisconsin. Each entry in this new edition has been updated or reviewed to provide the most current information available. Most of the data was drawn from IRS 990-PF tax returns filed by the foundations. Additional information was obtained from surveys, foundation Web sites, annual reports, and newsletters. While the national economic downturn has had a negative effect on Wisconsin foundations the past two years, there are some positive signs of recovery. The total number of active grantmaking foundations increased to a record high 1,324 (with 67 new foundations identified), and the total assets increased by 11% over last year to 6.2billion.However,totalgrantsfellto6.2 billion. However, total grants fell to 458 million, a 3% decrease from last year.https://epublications.marquette.edu/lib_fiw/1006/thumbnail.jp
    • …
    corecore