37,602 research outputs found

    2D materials and van der Waals heterostructures

    Full text link
    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With new 2D materials, truly 2D physics has started to appear (e.g. absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc). Novel heterostructure devices are also starting to appear - tunneling transistors, resonant tunneling diodes, light emitting diodes, etc. Composed from individual 2D crystals, such devices utilize the properties of those crystals to create functionalities that are not accessible to us in other heterostructures. We review the properties of novel 2D crystals and how their properties are used in new heterostructure devices

    Literacy: A cultural influence on functional left-right differences in the inferior parietal cortex

    Get PDF
    The current understanding of hemispheric interaction is limited. Functional hemispheric specialization is likely to depend on both genetic and environmental factors. In the present study we investigated the importance of one factor, literacy, for the functional lateralization in the inferior parietal cortex in two independent samples of literate and illiterate subjects. The results show that the illiterate group are consistently more right-lateralized than their literate controls. In contrast, the two groups showed a similar degree of left-right differences in early speech-related regions of the superior temporal cortex. These results provide evidence suggesting that a cultural factor, literacy, influences the functional hemispheric balance in reading and verbal working memory-related regions. In a third sample, we investigated grey and white matter with voxel-based morphometry. The results showed differences between literacy groups in white matter intensities related to the mid-body region of the corpus callosum and the inferior parietal and parietotemporal regions (literate > illiterate). There were no corresponding differences in the grey matter. This suggests that the influence of literacy on brain structure related to reading and verbal working memory is affecting large-scale brain connectivity more than grey matter per se

    Electronic compressibility of a graphene bilayer

    Full text link
    We calculate the electronic compressibility arising from electron-electron interactions for a graphene bilayer within the Hartree-Fock approximation. We show that, due to the chiral nature of the particles in this system, the compressibility is rather different from those of either the two-dimensional electron gas or ordinary semiconductors. We find that an inherent competition between the contributions coming from intra-band exchange interactions (dominant at low densities) and inter-band interactions (dominant at moderate densities) leads to a non-monotonic behavior of the compressibility as a function of carrier density.Comment: 4 pages, 4 figures. Final versio

    On the large N limit, W_\infty Strings, Star products, AdS/CFT Duality, Nonlinear Sigma Models on AdS spaces and Chern-Simons p-branes

    Full text link
    It is shown that the large NN limit of SU(N) YM in curvedcurved mm-dim backgrounds can be subsumed by a higher m+nm+n dimensional gravitational theory which can be identified to an mm-dim generally invariant gauge theory of diffs NN, where NN is an nn-dim internal space (Cho, Sho, Park, Yoon). Based on these findings, a very plausible geometrical interpretation of the AdS/CFTAdS/CFT correspondence could be given. Conformally invariant sigma models in D=2nD=2n dimensions with target non-compact SO(2n,1) groups are reviewed. Despite the non-compact nature of the SO(2n,1), the classical action and Hamiltonian are positive definite. Instanton field configurations are found to correspond geometrically to conformal ``stereographic'' mappings of R2nR^{2n} into the Euclidean signature AdS2nAdS_{2n} spaces. The relation between Self Dual branes and Chern-Simons branes, High Dimensional Knots, follows. A detailed discussion on W∞W_\infty symmetry is given and we outline the Vasiliev procedure to construct an action involving higher spin massless fields in AdS4AdS_4. This AdS4AdS_4 spacetime higher spin theory should have a one-to-one correspondence to noncritical W∞W_\infty strings propagating on AdS4×S7AdS_4 \times S^7.Comment: 43 pages, Tex fil

    Consistent Truncation to Three Dimensional (Super-)gravity

    Get PDF
    For a general three dimensional theory of (super-)gravity coupled to arbitrary matter fields with arbitrary set of higher derivative terms in the effective action, we give an algorithm for consistently truncating the theory to a theory of pure (super-)gravity with the gravitational sector containing only Einstein-Hilbert, cosmological constant and Chern-Simons terms. We also outline the procedure for finding the parameters of the truncated theory. As an example we consider dimensional reduction on S^2 of the 5-dimensional minimal supergravity with curvature squared terms and obtain the truncated theory without any curvature squared terms. This truncated theory reproduces correctly the exact central charge of the boundary CFT.Comment: LaTeX file, 22 page

    The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities

    Full text link
    The thermal behavior of a one-dimensional antiferromagnetic chain doped by donor impurities was analyzed. The ground state of such a chain corresponds to the formation of a set of ferromagnetically correlated regions localized near impurities (bound magnetic polarons). At finite temperatures, the magnetic structure of the chain was calculated simultaneously with the wave function of a conduction electron bound by an impurity. The calculations were performed using an approximate variational method and a Monte Carlo simulation. Both these methods give similar results. The analysis of the temperature dependence of correlation functions for neighboring local spins demonstrated that the ferromagnetic correlations inside a magnetic polaron remain significant even above the N\'eel temperature TNT_N implying rather high stability of the magnetic polaron state. In the case when the electron-impurity coupling energy VV is not too high (for VV lower that the electron hopping integral tt), the magnetic polaron could be depinned from impurity retaining its magnetic structure. Such a depinning occurs at temperatures of the order of TNT_N. At even higher temperatures (T∼tT \sim t) magnetic polarons disappear and the chain becomes completely disordered.Comment: 17 pages, 5 figures, RevTe
    • …
    corecore