1,437 research outputs found
A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis
Background: Bacterial exported proteins represent key components of the host-pathogen interplay. Hence, we
sought to implement a combined approach for characterizing the entire exoproteome of the pathogenic
bacterium Corynebacterium pseudotuberculosis, the etiological agent of caseous lymphadenitis (CLA) in sheep and
goats.
Results: An optimized protocol of three-phase partitioning (TPP) was used to obtain the C. pseudotuberculosis
exoproteins, and a newly introduced method of data-independent MS acquisition (LC-MSE) was employed for
protein identification and label-free quantification. Additionally, the recently developed tool SurfG+ was used for in
silico prediction of sub-cellular localization of the identified proteins. In total, 93 different extracellular proteins of
C. pseudotuberculosis were identified with high confidence by this strategy; 44 proteins were commonly identified
in two different strains, isolated from distinct hosts, then composing a core C. pseudotuberculosis exoproteome.
Analysis with the SurfG+ tool showed that more than 75% (70/93) of the identified proteins could be predicted as
containing signals for active exportation. Moreover, evidence could be found for probable non-classical export of
most of the remaining proteins.
Conclusions: Comparative analyses of the exoproteomes of two C. pseudotuberculosis strains, in addition to
comparison with other experimentally determined corynebacterial exoproteomes, were helpful to gain novel
insights into the contribution of the exported proteins in the virulence of this bacterium. The results presented
here compose the most comprehensive coverage of the exoproteome of a corynebacterial species so far
Efferent Pathways in Sodium Overload-Induced Renal Vasodilation in Rats
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. the present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280-350 g) were anesthetized with sodium thiopental (40 mg. kg(-1), i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. in anesthetized rats (n = 6), OT infusion (0.03 mu g . kg(-1), i.v.) induced renal vasodilation. Consistent with this result, ex vivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml . kg(-1) b.wt., i.v.) was infused over 60 s. in sham rats (n = 6), hypertonic saline induced renal vasodilation. the OXTR antagonist (AT; atosiban, 40 mu g . kg(-1) . h(-1), i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. the combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Goias, Ctr Neurosci & Cardiovasc Physiol, Inst Biol Sci, Dept Physiol Sci, Goiania, Go, BrazilUniv Fed Uberlandia, Fac Phys Educ, Inst Biol Sci, BR-38400 Uberlandia, MG, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilUniv Fed Goias, Inst Biol Sci, Mol Biol Lab, Goiania, Go, BrazilUniv Fed Goias, Inst Biol Sci, Dept Biochem & Mol Biol, Goiania, Go, BrazilUniversidade Federal de São Paulo, Dept Physiol, São Paulo, BrazilFundacao de Amparo a Pesquisa do Estado de Goias (FAPEG): 2012/0055431086Fundacao de Amparo a Pesquisa do Estado de Goias (FAPEG): 2009/10267000352CNPq: 477832/2010-5CNPq: 483411/2012-4Web of Scienc
Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil
As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS
Mammography-based screening program: preliminary results from a first 2-year round in a Brazilian region using mobile and fixed units
RLH, TBS and ALF made substantial contributions to the conception and
design of the article, the acquisition, analysis and interpretation of the data,
and drafting of the article. ECM, JSCM and NB made substantial
contributions to the conception and design of the study.Background: Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer deaths
among women worldwide. The use of mobile mammography units to offer screening to women living in remote
areas is a rational strategy to increase the number of women examined. This study aimed to evaluate results from
the first 2 years of a government-organized mammography screening program implemented with a mobile unit
(MU) and a fixed unit (FU) in a rural county in Brazil. The program offered breast cancer screening to women living
in Barretos and the surrounding area.
Methods: Based on epidemiologic data, 54 238 women, aged 40 to 69 years, were eligible for breast cancer
screening. The study included women examined from April 1, 2003 to March 31, 2005. The chi-square test and
Bonferroni correction analyses were used to evaluate the frequencies of tumors and the importance of clinical
parameters and tumor characteristics. Significance was set at p < 0.05.
Results: Overall, 17 964 women underwent mammography. This represented 33.1% of eligible women in the area.
A mean of 18.6 and 26.3 women per day were examined in the FU and MU, respectively. Seventy six patients were
diagnosed with breast cancer (41 (54%) in the MU). This represented 4.2 cases of breast cancer per 1000
examinations. The number of cancers detected was significantly higher in women aged 60 to 69 years than in
those aged 50 to 59 years (p < 0.001) or 40 to 49 years (p < 0.001). No difference was observed between women
aged 40 to 49 years and those aged 50 to 59 years (p = 0.164). The proportion of tumors in the early (EC 0 and EC
I) and advanced (CS III and CS IV) stages of development were 43.4% and 15.8%, respectively.
Conclusions: Preliminary results indicate that this mammography screening program is feasible for implementation
in a rural Brazilian territory and favor program continuation
Abundância de gavião-real e gavião-real falso numa área sob impacto de reservatório no Baixo e Médio rio Xingu
In the Brazilian Amazon, two monospecific genera, the Harpy Eagle and Crested Eagle have low densities and are classified by IUCN as Near Threatened due to habitat loss, deforestation, habitat degradation and hunting. In this study, we evaluate occurrence of these large raptors using the environmental surveys database from Belo Monte Hydroelectric Power Plant. Integrating the dataset from two methods, we plotted a distribution map along the Xingu River, including records over a 276-km stretch of river. Terrestrial surveys (RAPELD method) were more efficient for detecting large raptors than standardized aquatic surveys, although the latter were complementary in areas without modules. About 53% of the records were obtained during activities of wildlife rescue/flushing, vegetation suppression or in transit. Between 2012 and 2014, four Harpy Eagles were removed from the wild; two shooting victims, one injured by collision with power lines and one hit by a vehicle. Also, seven nests were mapped. The mean distance between Harpy Eagle records was 15 km along the river channel, with a mean of 20 km between nests near the channel, which allowed us to estimate 20 possible pairs using the alluvial forest, riverine forest and forest fragments. Territories of another ten pairs will probably be affected by inundation of the Volta Grande channel, which is far from the main river. The average distance between Crested Eagle records was 16 km along the river channel. The only nest found was 1.3 km away from a Harpy Eagle nest. The remnant forests are under threat of being replaced by cattle pastures, so we recommend that permanently protected riparian vegetation borders (APP) be guaranteed, and that forest fragments within 5 km of the river be conserved to maintain eagle populations. © 2015, Instituto Internacional de Ecologia. All rights reserved
SARS-CoV-2 uses CD4 to infect T helper lymphocytes
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains
Ruiz JC, D'Afonseca V, Silva A, et al. Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains. PLoS ONE. 2011;6(4): e18551.Background: Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829
SARS-CoV-2 uses CD4 to infect T helper lymphocytes
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
- …