466 research outputs found
Quantum transport in double-gated graphene devices
Double-gated graphene devices provide an important platform for understanding
electrical and optical properties of graphene. Here we present transport
measurements of single layer, bilayer and trilayer graphene devices with
suspended top gates. In zero magnetic fields, we observe formation of pnp
junctions with tunable polarity and charge densities, as well as a tunable band
gap in bilayer graphene and a tunable band overlap in trilayer graphene. In
high magnetic fields, the devices' conductance are quantized at integer and
fractional values of conductance quantum, and the data are in good agreement
with a model based on edge state equilibration at pn interfaces
Entropic C-theorems in free and interacting two-dimensional field theories
The relative entropy in two-dimensional field theory is studied on a cylinder
geometry, interpreted as finite-temperature field theory. The width of the
cylinder provides an infrared scale that allows us to define a dimensionless
relative entropy analogous to Zamolodchikov's function. The one-dimensional
quantum thermodynamic entropy gives rise to another monotonic dimensionless
quantity. I illustrate these monotonicity theorems with examples ranging from
free field theories to interacting models soluble with the thermodynamic Bethe
ansatz. Both dimensionless entropies are explicitly shown to be monotonic in
the examples that we analyze.Comment: 34 pages, 3 figures (8 EPS files), Latex2e file, continuation of
hep-th/9710241; rigorous analysis of sufficient conditions for universality
of the dimensionless relative entropy, more detailed discussion of the
relation with Zamolodchikov's theorem, references added; to appear in Phys.
Rev.
Radio Frequency Sputtered Cobalt Oxide Coating: Structural, Optical, And Electrochemical Characterization
Cobalt oxide thin films (thickness 2000 Ă…) with different stoichiometries were deposited by reactive rf sputtering. The variation of the oxygen partial pressure lead to films with compositions varying from metallic cobalt to CO3O4, as determined by x-ray diffraction and x-ray photoelectron spectroscopy. The electrochromic properties of the films were investigated in aqueous electrolytes (0.1 M KOH). The initial electrochemical behavior of the films is strongly dependent on the film deposition conditions, but after cycling the electrochemical/electrochromic characteristics of the different deposits were quite similar. Transmittance changes and electrochromic efficiency are discussed.7495835584
Schroedingers equation with gauge coupling derived from a continuity equation
We consider a statistical ensemble of particles of mass m, which can be
described by a probability density \rho and a probability current \vec{j} of
the form \rho \nabla S/m. The continuity equation for \rho and \vec{j} implies
a first differential equation for the basic variables \rho and S. We further
assume that this system may be described by a linear differential equation for
a complex state variable \chi. Using this assumptions and the simplest possible
Ansatz \chi(\rho,S) Schroedingers equation for a particle of mass m in an
external potential V(q,t) is deduced. All calculations are performed for a
single spatial dimension (variable q) Using a second Ansatz \chi(\rho,S,q,t)
which allows for an explict q,t-dependence of \chi, one obtains a generalized
Schroedinger equation with an unusual external influence described by a
time-dependent Planck constant. All other modifications of Schroeodingers
equation obtained within this Ansatz may be eliminated by means of a gauge
transformation. Thus, this second Ansatz may be considered as a generalized
gauging procedure. Finally, making a third Ansatz, which allows for an
non-unique external q,t-dependence of \chi, one obtains Schroedingers equation
with electromagnetic potentials \vec{A}, \phi in the familiar gauge coupling
form. A possible source of the non-uniqueness is pointed out.Comment: 25 pages, no figure
Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization
Hydrochars were obtained after hydrous pyrolysis of a pine Kraft lignin using different reaction conditions (temperature, water content and residence time) and the residues were characterized through a wide range of analytical techniques including high-temperature rheometry, solid-state 13C nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and field emission scanning electron microscopy (FE-SEM). The results indicated that an increase in reaction temperature, an increase in residence time or a decrease in water content reduces the amount of fluid material in the residue. The hydrous pyrolysis conditions studied were not able to increase the maturation of lignin, which would result in an increase in the resolidification temperature, but reduced the amount of mineral matter in the hydrochar produced. On the other hand, the hydrochars obtained from pristine lignin, torrefied lignin (300 °C, 1 h) and their 50:50 wt.%/wt.% blend at temperatures of 350 °C after 6 h using 30 ml of water had lower ash contents (45%) is excessively high compared to that of the good coking coal (10%) and the micro-strength of the biocokes (R139%) and high microporous surface areas ( > 400 m2/g) of the biocokes and high alkalinity index of the lignins (>27%) compared to those of the coke (27% and 145 m2/g) and coal (0.6%), respectively. Furthermore, the biocoke derived from the hydrous pyrolysed torrefied lignin did not agglomerate, which could not be explained by changes in the chemical properties of the material and requires further investigation
Gemini Observations of Disks and Jets in Young Stellar Objects and in Active Galaxies
We present first results from the Near-infrared Integral Field Spectrograph
(NIFS) located at Gemini North. For the active galaxies Cygnus A and Perseus A
we observe rotationally-supported accretion disks and adduce the existence of
massive central black holes and estimate their masses. In Cygnus A we also see
remarkable high-excitation ionization cones dominated by photoionization from
the central engine. In the T-Tauri stars HV Tau C and DG Tau we see
highly-collimated bipolar outflows in the [Fe II] 1.644 micron line, surrounded
by a slower molecular bipolar outflow seen in the H_2 lines, in accordance with
the model advocated by Pyo et al. (2002).Comment: Invited paper presented at the 5th Stromlo Symposium. 9 pages, 7
figures. Accepted for publication in Astrophysics & Space Scienc
Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet
We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic
insulator, and coupled to it via a weak antiferromagnetic spin exchange
interaction. We argue that this model may qualitatively capture the physics of
a single charge stripe in the cuprates on length- and time scales shorter than
those set by its fluctuation dynamics. Using a local mean-field approach we
identify the low-energy effective theory that describes the electronic spin
sector of the stripe as that of a sine-Gordon model. We determine its phases
via a perturbative renormalization group analysis. For realistic values of the
model parameters we obtain a phase characterized by enhanced spin density and
composite charge density wave correlations, coexisting with subleading triplet
and composite singlet pairing correlations. This result is shown to be
independent of the spatial orientation of the stripe on the square lattice.
Slow transverse fluctuations of the stripes tend to suppress the density
correlations, thus promoting the pairing instabilities. The largest amplitudes
for the composite instabilities appear when the stripe forms an antiphase
domain wall in the antiferromagnet. For twisted spin alignments the amplitudes
decrease and leave room for a new type of composite pairing correlation,
breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure
Cryo-EM structure of the dimeric Rhodobacter sphaeroides RC-LH1 core complex at 2.9 Å : the structural basis for dimerisation
The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Å resolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 β polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αβ subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half
Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment
In this paper, we review theoretical and experimental research on rare region
effects at quantum phase transitions in disordered itinerant electron systems.
After summarizing a few basic concepts about phase transitions in the presence
of quenched randomness, we introduce the idea of rare regions and discuss their
importance. We then analyze in detail the different phenomena that can arise at
magnetic quantum phase transitions in disordered metals, including quantum
Griffiths singularities, smeared phase transitions, and cluster-glass
formation. For each scenario, we discuss the resulting phase diagram and
summarize the behavior of various observables. We then review several recent
experiments that provide examples of these rare region phenomena. We conclude
by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative
Ising chain fixed, references added, v3: final version as publishe
The 2.4 Ă… cryo-EM structure of a heptameric light-harvesting 2 complex reveals two carotenoid energy transfer pathways
We report the 2.4 Ångström resolution structure of the light-harvesting 2 (LH2) complex from Marichromatium (Mch.) purpuratum determined by cryogenic electron microscopy. The structure contains a heptameric ring that is unique among all known LH2 structures, explaining the unusual spectroscopic properties of this bacterial antenna complex. We identify two sets of distinct carotenoids in the structure and describe a network of energy transfer pathways from the carotenoids to bacteriochlorophyll a molecules. The geometry imposed by the heptameric ring controls the resonant coupling of the long-wavelength energy absorption band. Together, these details reveal key aspects of the assembly and oligomeric form of purple bacterial LH2 complexes that were previously inaccessible by any technique
- …