4 research outputs found

    A Survey of Zoonotic Bacteria in the Spleen of Six Species of Rodents in Panama

    No full text
    Emerging zoonotic diseases are one of the main threats to human and animal health. Among the agents with the potential for zoonoses, those of bacterial origin have great relevance in Public Health. Rodents are considered one of the main reservoirs of pathogens that represent a risk to human health or animal species. We used massive 16S ribosomal RNA gene amplicon sequencing to survey bacteria present in the spleen of six species of rodents in Panama in order to identify bacterial taxa with zoonotic potential in the country. We found 3352 bacterial Amplicon Sequence Variants (ASVs, i.e., phylogenetic species) in the spleen of six rodent species surveyed (Liomys adspersus, Melanomys caliginosus, Mus musculus, Proechimys semispinosus, Rattus rattus, Zygodontomys brevicauda). This bacterial community was represented by 25 phyla, 55 classes, 140 orders, 268 families, and 508 genera. The three predominant phyla were Actinobacteria, Firmicutes, and Proteobacteria, and the five predominant classes were Actinobacteria, Alpha- and Gammaproteobacteria, Bacilli, and Clostridia. There were seven high-abundance genera: Acinetobacter, Bartonella, Cutibacterium, Enterococcus, Sarcina, Staphylococcus, and Wolbachia. Genera found with less abundance included Bradyrhizobium, Chryseobacterium, Clostridium, Corynebacterium, Lactobacillus, Pseudonocardia, Rhodococcus, and Sphingomonas. Some of these genera (high or low abundance) have clinical importance. The identification of bacterial taxa with zoonotic potential in rodent species performed here allows us to have surveillance mechanisms for these pathogens and to be able to recognize localities to be prioritized for prevention of transmission and outbreaks, thus being of value for public health in Panama

    The Microbiome of Neotropical Water Striders and Its Potential Role in Codiversification

    No full text
    Insects host a highly diverse microbiome, which plays a crucial role in insect life. However, the composition and diversity of microbiomes associated with Neotropical freshwater insects is virtually unknown. In addition, the extent to which diversification of this microbiome is associated with host phylogenetic divergence remains to be determined. Here, we present the first comprehensive analysis of bacterial communities associated with six closely related species of Neotropical water striders in Panama. We used comparative phylogenetic analyses to assess associations between dominant bacterial linages and phylogenetic divergence among species of water striders. We found a total of 806 16S rRNA amplicon sequence variants (ASVs), with dominant bacterial taxa belonging to the phyla Proteobacteria (76.87%) and Tenericutes (19.51%). Members of the α- (e.g., Wolbachia) and γ- (e.g., Acinetobacter, Serratia) Proteobacteria, and Mollicutes (e.g., Spiroplasma) were predominantly shared across species, suggesting the presence of a core microbiome in water striders. However, some bacterial lineages (e.g., Fructobacillus, Fluviicola and Chryseobacterium) were uniquely associated with different water strider species, likely representing a distinctive feature of each species’ microbiome. These findings indicate that both host identity and environmental context are important drivers of microbiome diversity in water striders. In addition, they suggest that diversification of the microbiome is associated with diversification in water striders. Although more research is needed to establish the evolutionary consequences of host-microbiome interaction in water striders, our findings support recent work highlighting the role of bacterial community host-microbiome codiversification

    Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera)

    Get PDF
    The soil fauna of the tropics remains one of the least known components of the biosphere. Long-term monitoring of this fauna is hampered by the lack of taxonomic expertise and funding. These obstacles may potentially be lifted with DNA metabarcoding. To validate this approach, we studied the ants, springtails and termites of 100 paired soil samples from Barro Colorado Island, Panama. The fauna was extracted with Berlese-Tullgren funnels and then either sorted with traditional taxonomy and known, individual DNA barcodes ("traditional samples") or processed with metabarcoding ("metabarcoding samples"). We detected 49 ant, 37 springtail and 34 termite species with 3.46 million reads of the COI gene, at a mean sequence length of 233 bp. Traditional identification yielded 80, 111 and 15 species of ants, springtails and termites, respectively; 98%, 37% and 100% of these species had a Barcode Index Number (BIN) allowing for direct comparison with metabarcoding. Ants were best surveyed through traditional methods, termites were better detected by metabarcoding, and springtails were equally well detected by both techniques. Species richness was underestimated, and faunal composition was different in metabarcoding samples, mostly because 37% of ant species were not detected. The prevalence of species in metabarcoding samples increased with their abundance in traditional samples, and seasonal shifts in species prevalence and faunal composition were similar between traditional and metabarcoding samples. Probable false positive and negative species records were reasonably low (13-18% of common species). We conclude that metabarcoding of samples extracted with Berlese-Tullgren funnels appear suitable for the long-term monitoring of termites and springtails in tropical rainforests. For ants, metabarcoding schemes should be complemented by additional samples of alates from Malaise or light traps

    Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review

    No full text
    corecore