39 research outputs found
The nurse in the management of materials in teaching hospitals
OBJECTIVETo present the nurse's integration within materials management of six teaching hospitals of Paraná - Brazil, and to describe the activities performed by nurses within this process.METHODA study of a qualitative approach and descriptive nature, conducted in teaching hospitals in Paraná, between June and August of 2013. The data collection was conducted through semi-structured interviews with eight nurses who worked in materials management; data were analyzed using content analysis.RESULTSThese showed that nurses perform ten categories of activities, distributed into four of the five steps of the materials management process.CONCLUSIONThe nurse, in performing of these activities, in addition to favoring the development of participative management, contributes to the organization, planning, and the standardization of the hospital supply process, giving greater credibility to the work with professionals who use the materials, and to the suppliers
System Theoretic Process Analysis: a literature survey on the approaches used for improving the safety in complex systems
Computer systems are becoming increasingly complex, specially interactive software systems, namely software user interfaces. The scientic community relies on dierent methods to assess their safety. This article provides an updated literature survey on hazard analysis approaches used to improve the safety of complex systems. To support the survey, we conceptualise complex systems, highlighting the challenge in terms of assessing their safety. We provide a brief overview on the approaches historically available to tackle issues in those systems, along with their most common methods. Finally, the article focuses in one method of a non-traditional approach, which is described in more details, along with some of its extensions, which seeks to improve the hazard analysis in complex systems
Sensitivity of South American tropical forests to an extreme climate anomaly
The tropical forest carbon sink is known to be drought sensitive, but it is unclear which forests are the most vulnerable to extreme events. Forests with hotter and drier baseline conditions may be protected by prior adaptation, or more vulnerable because they operate closer to physiological limits. Here we report that forests in drier South American climates experienced the greatest impacts of the 2015–2016 El Niño, indicating greater vulnerability to extreme temperatures and drought. The long-term, ground-measured tree-by-tree responses of 123 forest plots across tropical South America show that the biomass carbon sink ceased during the event with carbon balance becoming indistinguishable from zero (−0.02 ± 0.37 Mg C ha−1 per year). However, intact tropical South American forests overall were no more sensitive to the extreme 2015–2016 El Niño than to previous less intense events, remaining a key defence against climate change as long as they are protected
Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions
BACKGROUND: Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. RESULTS: The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. CONCLUSIONS: Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities