7 research outputs found

    Erythrina velutina Willd. alkaloids: Piecing biosynthesis together from transcriptome analysis and metabolite profiling of seeds and leaves

    Get PDF
    Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. The scarce studies regarding non-model plants impair advances in this field. Erythrina spp. are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids, which can act on several pathology-related biological targets. Objective: Herein the purpose is to employ combined transcriptome and metabolome analyses (seeds and leaves) of a non-model medicinal Fabaceae species grown in its unique arid natural habitat. The study tries to propose a putative biosynthetic pathway for the bioactive alkaloids by using an omic integrated approach. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a Illumina NextSeq 500 platform. Regarding the targeted metabolite profiling, Nuclear Magnetic Resonance and the High-Performance Liquid Chromatography coupled to a micrOTOF-QII, High Resolution Mass Spectrometer, were used. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids by metabolome tools. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: These results contribute by indicating potential biotechnological targets Erythrina alkaloids biosynthesis as well as to improve molecular databases with omic data from a non-model medicinal plant. Furthermore, they reveal an interesting chemical diversity in Erythrina velutina harvested in Caatinga. Last, but not least, this data may also contribute to tap Brazilian biodiversity in a rational and sustainable fashion, promoting adequate public policies for preservation and protection of sensitive areas within the Caatinga

    Indução de calos embriogênicos nas variedades RB 72 454 e SP 81 3250 de cana-de-açúcar (<i>Saccahurum</i> sp.).

    Get PDF
    Este trabalhou objetivou avaliar a resposta das variedades RB 72 454 e SP 81 3250 ao tratamento com 2,4-D

    Freshwater Plants Synthesize Sulfated Polysaccharides: Heterogalactans from Water Hyacinth (Eicchornia crassipes)

    Get PDF
    Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway

    Myrciaria tenella (DC.) O. Berg (Myrtaceae) Leaves as a Source of Antioxidant Compounds

    No full text
    Myrciaria species are widely studied to identify their chemical composition and evaluate their biological activity. Since evidence supporting the potential antioxidant and antiproliferative activity of Myrciaria tenella is lacking, the aim of this work was to evaluate these activities in six different leaf extracts: hexane (CHE), chloroform (CCE), ethanolic (CEE), methanolic (CME), aqueous final (CFAE), and only aqueous (CAE). The presence of phenolic compounds, tannin, saponin, and ursolic acid was determined by thin layer chromatography (TLC). CEE, CME, and CFAE showed in vitro antioxidant activity at the initiation, propagation, and termination stages of oxidative damage. Moreover, no toxicity was observed in the 3T3 non-cancerous cell line. On the other hand, all extracts promoted cell death in the tumor cell lines human cervical adenocarcinoma cell line (HeLa) and human stomach gastric adenocarcinoma cell line (AGS). Based on these results, the effect of CEE on the AGS cell line was analyzed using flow cytometry, and necrosis and late apoptosis were observed. Finally, the Caenorhabditis elegans model showed that CEE was able to reduce the basal reactive oxygen species (ROS) level. Ultra-performance liquid chromatography (UPLC) analysis showed rutin as the major compound in CEE. Therefore, Myrciaria tenella fresh leaves may be potential sources of molecules possessing antioxidant and antiproliferative activities
    corecore