125 research outputs found
Micro/Nanoscale Parallel Patterning of Functional Biomolecules, Organic Fluorophores and Colloidal Nanocrystals
We describe the design and optimization of a reliable strategy that combines self-assembly and lithographic techniques, leading to very precise micro-/nanopositioning of biomolecules for the realization of micro- and nanoarrays of functional DNA and antibodies. Moreover, based on the covalent immobilization of stable and versatile SAMs of programmable chemical reactivity, this approach constitutes a general platform for the parallel site-specific deposition of a wide range of molecules such as organic fluorophores and water-soluble colloidal nanocrystals
Mycoplasma hominis deep wound infection after neuromuscular scoliosis surgery: the use of real-time polymerase chain reaction (PCR)
Mycoplasma hominis is a commensal of the genitourinary tract. It mostly causes infections to associated structures of this system; however, occasionally it is a pathogen in nongenitourinary tract infections. Since, M. hominis strains require special growth conditions and cannot be Gram stained, they may be missed or delay diagnosis. This report describes a deep wound infection caused by M. hominis after neuromuscular scoliosis surgery; M. hominis was recovered by real-time polymerase chain reaction (PCR). An awareness of the role of M. hominis as an extragenital pathogen in musculoskeletal infections, especially in neuromuscular scoliosis, being a high-risk group for postoperative wound infection, it is necessary to identify this pathogen. Real-time PCR for postoperative deep wound infection, in patients with a history of genitourinary infections, decreases the delay in diagnosis and treatment. In these cases rapid real-time PCR on deep cultures should be considered
Female germ unit in Genlisea and Utricularia, with remarks about the evolution of the extra-ovular female gametophyte in members of Lentibulariaceae
Lentibulariaceae is the largest family among carnivorous plants which displays not only an unusual morphology and anatomy but also the special evolution of its embryological characteristics. It has previously been reported by authors that Utricularia species lack a filiform apparatus in the synergids. The main purposes of this study were to determine whether a filiform apparatus occurs in the synergids of Utricularia and its sister genus Genlisea, and to compare the female germ unit in these genera. The present studies clearly show that synergids in both genera possess a filiform apparatus; however, it seems that Utricularia quelchii synergids have a simpler structure compared to Genlisea aurea and other typical angiosperms. The synergids are located at the terminal position in the embryo sacs of Pinguicula, Genlisea and were probably also located in that position in common Utricularia ancestor. This ancestral characteristic still occurs in some species from the Bivalvaria subgenus. An embryo sac, which grows out beyond the limit of the integument and has contact with nutritive tissue, appeared independently in different Utricularia lineages and as a consequence of this, the egg apparatus changes position from apical to lateral
Evidence for Metabolic Provisioning by a Common Invertebrate Endosymbiont, Wolbachia pipientis, during Periods of Nutritional Stress
Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects
Preventing AVF thrombosis: the rationale and design of the Omega-3 fatty acids (Fish Oils) and Aspirin in Vascular access OUtcomes in REnal Disease (FAVOURED) study
Background: Haemodialysis (HD) is critically dependent on the availability of adequate access to the systemic circulation, ideally via a native arteriovenous fistula (AVF). The Primary failure rate of an AVF ranges between 20-54%, due to thrombosis or failure of maturation. There remains limited evidence for the use of anti-platelet agents and uncertainty as to choice of agent(s) for the prevention of AVF thrombosis. We present the study protocol for a randomised, double-blind, placebo-controlled, clinical trial examining whether the use of the anti-platelet agents, aspirin and omega-3 fatty acids, either alone or in combination, will effectively reduce the risk of early thrombosis in de novo AVF
Microsporidia::Why Make Nucleotides if You Can Steal Them?
Microsporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes including humans and economically important fish and insects. Surviving and flourishing inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary innovation. Genome sequence analyses show that microsporidia have lost most of the genes needed for making primary metabolites, such as amino acids and nucleotides, and also that they have only a limited capacity for making adenosine triphosphate (ATP). Since microsporidia cannot grow and replicate without the enormous amounts of energy and nucleotide building blocks needed for protein, DNA, and RNA biosynthesis, they must have evolved ways of stealing these substrates from the infected host cell. Providing they can do this, genome analyses suggest that microsporidia have the enzyme repertoire needed to use and regenerate the imported nucleotides efficiently. Recent functional studies suggest that a critical innovation for adapting to intracellular life was the acquisition by lateral gene transfer of nucleotide transport (NTT) proteins that are now present in multiple copies in all microsporidian genomes. These proteins are expressed on the parasite surface and allow microsporidia to steal ATP and other purine nucleotides for energy and biosynthesis from their host. However, it remains unclear how other essential metabolites, such as pyrimidine nucleotides, are acquired. Transcriptomic and experimental studies suggest that microsporidia might manipulate host cell metabolism and cell biological processes to promote nucleotide synthesis and to maximise the potential for ATP and nucleotide import. In this review, we summarise recent genomic and functional data relating to how microsporidia exploit their hosts for energy and building blocks needed for growth and nucleic acid metabolism and we identify some remaining outstanding questions
Neurogenic bladder: etiology and assessment
A review of the various causes of neurologic impairment to the lower urinary tract in children was the aim of this presentation. The emphasis was on diagnosis, pathophysiology, and treatment that strive to maintain as normal a function as possible in order to achieve eventual urinary continence and health of the upper urinary tract. The latest principles based on the most up to date evidence are promulgated but with an eye towards historical prospective. The reader should gain an adequate understanding of various disorders that comprise this condition and feel comfortable with proposing options for management when faced with the responsibility of caring for an affected child
Induced hypothermia in patients with septic shock and respiratory failure (CASS): a randomised, controlled, open-label trial
BACKGROUND: Animal models of serious infection suggest that 24 h of induced hypothermia improves circulatory and respiratory function and reduces mortality. We tested the hypothesis that a reduction of core temperature to 32-34°C attenuates organ dysfunction and reduces mortality in ventilator-dependent patients with septic shock. METHODS: In this randomised, controlled, open-label trial, we recruited patients from ten intensive care units (ICUs) in three countries in Europe and North America. Inclusion criteria for patients with severe sepsis or septic shock were a mean arterial pressure of less than 70 mm Hg, mechanical ventilation in an ICU, age at least 50 years, predicted length of stay in the ICU at least 24 h, and recruitment into the study within 6 h of fulfilling inclusion criteria. Exclusion criteria were uncontrolled bleeding, clinically important bleeding disorder, recent open surgery, pregnancy or breastfeeding, or involuntary psychiatric admission. We randomly allocated patients 1:1 (with variable block sizes ranging from four to eight; stratified by predictors of mortality, age, Acute Physiology and Chronic Health Evaluation II score, and study site) to routine thermal management or 24 h of induced hypothermia (target 32-34°C) followed by 48 h of normothermia (36-38°C). The primary endpoint was 30 day all-cause mortality in the modified intention-to-treat population (all randomly allocated patients except those for whom consent was withdrawn or who were discovered to meet an exclusion criterion after randomisation but before receiving the trial intervention). Patients and health-care professionals giving the intervention were not masked to treatment allocation, but assessors of the primary outcome were. This trial is registered with ClinicalTrials.gov, number NCT01455116. FINDINGS: Between Nov 1, 2011, and Nov 4, 2016, we screened 5695 patients. After recruitment of 436 of the planned 560 participants, the trial was terminated for futility (220 [50%] randomly allocated to hypothermia and 216 [50%] to routine thermal management). In the hypothermia group, 96 (44·2%) of 217 died within 30 days versus 77 (35·8%) of 215 in the routine thermal management group (difference 8·4% [95% CI -0·8 to 17·6]; relative risk 1·2 [1·0-1·6]; p=0·07]). INTERPRETATION: Among patients with septic shock and ventilator-dependent respiratory failure, induced hypothermia does not reduce mortality. Induced hypothermia should not be used in patients with septic shock. FUNDING: Trygfonden, Lundbeckfonden, and the Danish National Research Foundation
Genome Sequence of the Pea Aphid Acyrthosiphon pisum
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
- …