744 research outputs found

    Local Moment Formation in the Periodic Anderson Model with Superconducting Correlations

    Full text link
    We study local moment formation in the presence of superconducting correlations among the f-electrons in the periodic Anderson model. Local moments form if the Coulomb interaction U>U_cr. We find that U_cr is considerably stronger in the presence of superconducting correlations than in the non-superconducting system. Our study is done for various values of the f-level energy and electronic density. The smallest critical U_cr values occur for the case where the number of f- electrons per site is equal to one. In the presence of d-wave superconducting correlations we find that local moment formation presents a quantum phase transition as function of pressure. This quantum phase transition separates a region where local moments and d-wave superconductivity coexist from another region characterized by a superconducting ground state with no local moments. We discuss the possible relevance of these results to experimental studies of the competition between magnetic order and superconductivity in CeCu_2Si_2.Comment: 4 pages. accepted for publication in Phys. Rev.

    Coexistence of antiferromagnetism and superconductivity in the Anderson lattice

    Full text link
    We study the interplay between antiferromagnetism and superconductivity in a generalized infinite-UU Anderson lattice, where both superconductivity and antiferromagnetic order are introduced phenomenologically in mean field theory. In a certain regime, a quantum phase transition is found which is characterized by an abrupt expulsion of magnetic order by d-wave superconductivity, as externally applied pressure increases. This transition takes place when the d-wave superconducting critical temperature, TcT_c, intercepts the magnetic critical temperature, TmT_m, under increasing pressure. Calculations of the quasiparticle bands and density of states in the ordered phases are presented. We calculate the optical conductivity σ(ω)\sigma(\omega) in the clean limit. It is shown that when the temperature drops below TmT_m a double peak structure develops in σ(ω)\sigma(\omega).Comment: 18 pages, 13 figure

    Non-destructive detection of cross-sectional strain and defect structure in an individual Ag five-fold twinned nanowire by 3D electron diffraction mapping

    Get PDF
    Coherent x-ray diffraction investigations on Ag five-fold twinned nanowires (FTNWs) have drawn controversial conclusions concerning whether the intrinsic 7.35° angular gap could be compensated homogeneously through phase transformation or inhomogeneously by forming disclination strain field. In those studies, the x-ray techniques only provided an ensemble average of the structural information from all the Ag nanowires. Here, using three-dimensional (3D) electron diffraction mapping approach, we non-destructively explore the cross-sectional strain and the related strain-relief defect structures of an individual Ag FTNW with diameter about 30 nm. The quantitative analysis of the fine structure of intensity distribution combining with kinematic electron diffraction simulation confirms that for such a Ag FTNW, the intrinsic 7.35° angular deficiency results in an inhomogeneous strain field within each single crystalline segment consistent with the disclination model of stress-relief. Moreover, the five crystalline segments are found to be strained differently. Modeling analysis in combination with system energy calculation further indicates that the elastic strain energy within some crystalline segments, could be partially relieved by the creation of stacking fault layers near the twin boundaries. Our study demonstrates that 3D electron diffraction mapping is a powerful tool for the cross-sectional strain analysis of complex 1D nanostructures

    Ancestral bias in the Hras1 gene and distal Chromosome 7 among inbred mice

    Get PDF
    Inbred strains of mice vary in their frequency of liver tumors initiated by a mutation in the Hras1 (H-ras) proto-oncogene. We sequenced 4.5 kb of the Hras1 gene on distal Chr 7 in a diverse set of 12 commonly used laboratory inbred strains of mice and detected no sequence variation to account for strain-specific differences in Hras1 mutation prevalence. Furthermore, the Hras1 sequence is essentially monoallelic for an ancestral gene derived from the M. m. domesticus species. To determine if the monoallelism and associated low rate of polymorphism are unique to Hras1 or representative of the general chromosomal locale, we extended the sequence analysis to 12 genes in the final 8 Mb of distal Chr 7. A region of at least 2.5 Mb that encompasses several genes, including Hras1 and the H19/Igf2 loci, demonstrates virtually no sequence variation. The 12 inbred strains share one dominant haplotype derived from the M. m. domesticus allele. Chromosomal regions flanking the monoallelic segment exhibit a significantly higher rate of variation and multiple haplotypes, a majority of which are attributed to M. m. domesticus or M. m. musculus ancestry

    The Political Economy of US Military Spending

    Full text link
    The causes of the dramatic rise in military spending in the post-war era have been the subject of much political and academic controversy. No extant formulation seems to provide a compelling explanation of the dynamics involved in the levels of, and rates of change in, such spending. In light of this, the authors develop a new model, based mainly on a political-business cycle argument, to account for these dynamics. The basic proposition in this model is that variations in national defense spending arise from political considerations which are related to real and desired conditions within the national economy. Applying this model to the experience of the United States 1948-1976, the authors show that it has a large measure of empirical validity. If one removes the effects of war-time mobilization, it is clear that for the United States the principal driving forces in military spending dynamics were (1) the perceived utility of such spending in stabilizing aggregate demand, (2) the political or electoral value of the perceived economic effects arising out of such spending, and (3) the pressures of institutional-constituency demands.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68958/2/10.1177_002234337901600202.pd

    How to Build Transcriptional Network Models of Mammalian Pattern Formation

    Get PDF
    Genetic regulatory networks of sequence specific transcription factors underlie pattern formation in multicellular organisms. Deciphering and representing the mammalian networks is a central problem in development, neurobiology, and regenerative medicine. Transcriptional networks specify intermingled embryonic cell populations during pattern formation in the vertebrate neural tube. Each embryonic population gives rise to a distinct type of adult neuron. The homeodomain transcription factor Lbx1 is expressed in five such populations and loss of Lbx1 leads to distinct respecifications in each of the five populations. allele, respectively. Microarrays were used to show that expression levels of 8% of all transcription factor genes were altered in the respecified pool. These transcription factor genes constitute 20–30% of the active nodes of the transcriptional network that governs neural tube patterning. Half of the 141 regulated nodes were located in the top 150 clusters of ultraconserved non-coding regions. Generally, Lbx1 repressed genes that have expression patterns outside of the Lbx1-expressing domain and activated genes that have expression patterns inside the Lbx1-expressing domain.nalysis, and think that it will be generally useful in discovering and assigning network interactions to specific populations. We discuss how ANCEA, coupled with population partitioning analysis, can greatly facilitate the systematic dissection of transcriptional networks that underlie mammalian patterning

    Tracking the Expression of Excitatory and Inhibitory Neurotransmission-Related Proteins and Neuroplasticity Markers after Noise Induced Hearing Loss

    Get PDF
    Excessive exposure to loud noise can damage the cochlea and create a hearing loss. These pathologies coincide with a range of CNS changes including reorganisation of frequency representation, alterations in the pattern of spontaneous activity and changed expression of excitatory and inhibitory neurotransmitters. Moreover, damage to the cochlea is often accompanied by acoustic disorders such as hyperacusis and tinnitus, suggesting that one or more of these neuronal changes may be involved in these disorders, although the mechanisms remain unknown. We tested the hypothesis that excessive noise exposure increases expression of markers of excitation and plasticity, and decreases expression of inhibitory markers over a 32-day recovery period. Adult rats (n = 25) were monaurally exposed to a loud noise (16 kHz, 1/10th octave band pass (115 dB SPL)) for 1-hour, or left as non-exposed controls (n = 5). Animals were euthanased at either 0, 4, 8, 16 or 32 days following acoustic trauma. We used Western Blots to quantify protein levels of GABAA receptor subunit α1 (GABAAα1), Glutamic-Acid Decarboxylase-67 (GAD-67), N-Methyl-D-Aspartate receptor subunit 2A (NR2A), Calbindin (Calb1) and Growth Associated Protein 43 (GAP-43) in the Auditory Cortex (AC), Inferior Colliculus (IC) and Dorsal Cochlear Nucleus (DCN). Compared to sham-exposed controls, noise-exposed animals had significantly (p<0.05): lower levels of GABAAα1 in the contralateral AC at day-16 and day-32, lower levels of GAD-67 in the ipsilateral DCN at day-4, lower levels of Calb1 in the ipsilateral DCN at day-0, lower levels of GABAAα1 in the ipsilateral AC at day-4 and day-32. GAP-43 was reduced in the ipsilateral AC for the duration of the experiment. These complex fluctuations in protein expression suggests that for at least a month following acoustic trauma the auditory system is adapting to a new pattern of sensory input
    • …
    corecore