7 research outputs found
IST Austria Thesis
Social insect colonies tend to have numerous members which function together like a single organism in such harmony that the term ``super-organism'' is often used. In this analogy the reproductive caste is analogous to the primordial germ
cells of a metazoan, while the sterile worker caste corresponds to somatic cells. The worker castes, like tissues, are
in charge of all functions of a living being, besides reproduction. The establishment of new super-organismal units
(i.e. new colonies) is accomplished by the co-dependent castes. The term oftentimes goes beyond a metaphor. We invoke it when we speak about the metabolic rate, thermoregulation, nutrient regulation and gas exchange of a social insect colony. Furthermore, we assert that the super-organism has an immune system, and benefits from ``social immunity''.
Social immunity was first summoned by evolutionary biologists to resolve the apparent discrepancy between the expected high frequency of disease outbreak amongst numerous, closely related tightly-interacting hosts, living in stable and microbially-rich environments, against the exceptionally scarce epidemic accounts in natural populations. Social
immunity comprises a multi-layer assembly of behaviours which have evolved to effectively keep the pathogenic enemies of a colony at bay. The field of social immunity has drawn interest, as it becomes increasingly urgent to stop
the collapse of pollinator species and curb the growth of invasive pests. In the past decade, several mechanisms of
social immune responses have been dissected, but many more questions remain open.
I present my work in two experimental chapters. In the first, I use invasive garden ants (*Lasius neglectus*) to study how pathogen load and its distribution among nestmates affect the grooming response of the group. Any given group of ants will carry out the same total grooming work, but will direct their grooming effort towards individuals
carrying a relatively higher spore load. Contrary to expectation, the highest risk of transmission does not stem from grooming highly contaminated ants, but instead, we suggest that the grooming response likely minimizes spore loss to the environment, reducing contamination from inadvertent pickup from the substrate.
The second is a comparative developmental approach. I follow black garden ant queens (*Lasius niger*) and their colonies from mating flight, through hibernation for a year. Colonies which grow fast from the start, have a lower chance of survival through hibernation, and those which survive grow at a lower pace later. This is true for colonies of naive
and challenged queens. Early pathogen exposure of the queens changes colony dynamics in an unexpected way: colonies from exposed queens are more likely to grow slowly and recover in numbers only after they survive hibernation.
In addition to the two experimental chapters, this thesis includes a co-authored published review on organisational
immunity, where we enlist the experimental evidence and theoretical framework on which this hypothesis is built,
identify the caveats and underline how the field is ripe to overcome them. In a final chapter, I describe my part in
two collaborative efforts, one to develop an image-based tracker, and the second to develop a classifier for ant
behaviour
Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies
Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing âsuperorganismsâââincipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism
Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants
In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes
Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies
Infections early in life can have enduring effects on an organismâs development and immunity. In this study, we show that this equally applies to developing âsuperorganismsâ â incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queenâs immune system to suppress pathogen proliferation. Early-life queen pathogen-exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queenâs pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism
Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity
Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion