37 research outputs found

    Food Availability, Foraging Behavior, and Diet of Autumn Migrant Landbirds in the Boise Foothills of Southwestern Idaho

    Get PDF
    Food availability and acquisition are critical components of a stopover site\u27s suitability, but we know relatively little about how changes in food availability affect the stopover ecology of migrating landbirds. We examined fruit and arthropod availability in three habitats, studied foraging behavior and diet, and investigated use versus availability for passerines migrating through southwestern Idaho in autumn. Hemiptera dominated foliage-dwelling arthropod communities in all three habitats, whereas Hymenoptera were most numerous among ground-dwelling arthropods. Mountain shrubland had relatively high biomass of both ground-dwelling and foliage-dwelling arthropods, whereas conifer forest had high biomass of foliage-dwelling arthropods only and shrub steppe had high biomass of ground-dwelling arthropods only. Species\u27 foraging behavior varied, but most species foraged in mountain shrubland more often than expected by chance. Diets of most species included a high proportion of certain Hemiptera and Hymenoptera with smaller proportions of Coleoptera, Diptera, and Heteroptera; Coleoptera and some Hemiptera were consistently preferred by most species. Importantly, all 19 bird species examined consumed some fruit, and this is the first documentation of frugivory for two warbler species. These data point to the importance of several arthropod taxa, especially the Hemiptera and Hymenoptera, and fruits to landbirds migrating in mountain shrubland in autumn. Finally, we found no effect of annual variation of fruit or arthropod abundance on migrants\u27 energetic condition, suggesting that food was sufficient for mass gain in all years of this study and/or that foraging behavior may be plastic enough to allow birds to gain mass despite annual differences in food availability

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    The Importance of Getting Names Right: The Myth of Markets for Water

    Full text link

    Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle

    No full text
    Protein folding factors (chaperones) are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS), have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease

    Stereoselective α,α'-annelation reactions of 1,3-dioxan-5-ones

    No full text
    Pyrrolidine enamines derived from three 1,3-dioxan-5-ones undergo (alpha,alpha'-annelation reactions with methyl alpha-(bromomethyl)acrylate to produce bridged 2,4-dioxabicyclo[3.3.1]-nonane ring systems with complete stereocontrol. Stereochemical outcomes have been rationalized based on steric and stereoelectronic interactions in intermediate boat-like conformations of the 1,3-dioxane ring and subsequent kinetic protonation to set an axial ester group on the cyclohexanone ring. Base-mediated ester epimerization provides the stereochemical array found in the highly oxygenated cyclohexane ring of phyllaemblic acid and glochicoccins B and D

    Myomesin is part of an integrity pathway that responds to sarcomere damage and disease.

    No full text
    The structure and function of the sarcomere of striated muscle is well studied but the steps of sarcomere assembly and maintenance remain under-characterized. With the aid of chaperones and factors of the protein quality control system, muscle proteins can be folded and assembled into the contractile apparatus of the sarcomere. When sarcomere assembly is incomplete or the sarcomere becomes damaged, suites of chaperones and maintenance factors respond to repair the sarcomere. Here we show evidence of the importance of the M-line proteins, specifically myomesin, in the monitoring of sarcomere assembly and integrity in previously characterized zebrafish muscle mutants. We show that myomesin is one of the last proteins to be incorporated into the assembling sarcomere, and that in skeletal muscle, its incorporation requires connections with both titin and myosin. In diseased zebrafish sarcomeres, myomesin1a shows an early increase of gene expression, hours before chaperones respond to damaged muscle. We found that myomesin expression is also more specific to sarcomere damage than muscle creatine kinase, and our results and others support the use of myomesin assays as an early, specific, method of detecting muscle damage
    corecore