557 research outputs found
Optical spectroscopy of candidate Alpha Persei white dwarfs
As part of an investigation into the high mass end of the initial mass-final
mass relation we performed a search for new white dwarf members of the nearby
(172.4 pc), young (80-90 Myr) Persei open star cluster. The
photometric and astrometric search using the UKIRT Infrared Deep Sky Survey and
SuperCOSMOS sky surveys discovered 14 new white dwarf candidates. We have
obtained medium resolution optical spectra of the brightest 11 candidates using
the William Herschel Telescope and confirmed that while 7 are DA white dwarfs,
3 are DB white dwarfs and one is an sdOB star, only three have cooling ages
within the cluster age, and from their position on the initial mass-final mass
relation, it is likely none are cluster members. This result is disappointing,
as recent work on the cluster mass function suggests that there should be at
least one white dwarf member, even at this young age. It may be that any white
dwarf members of Per are hidden within binary systems, as is the case
in the Hyades cluster, however the lack of high mass stars within the cluster
also makes this seem unlikely. One alternative is that a significant level of
detection incompleteness in the legacy optical image survey data at this
Galactic latitude has caused some white dwarf members to be overlooked. If this
is the case, Gaia will find them.Comment: 8 pages, 7 Figures, 3 Tables. Accepted for publication in MNRA
The status and future of EUV astronomy
The Extreme Ultraviolet wavelength range was one of the final windows to be
opened up to astronomy. Nevertheless, it provides very important diagnostic
tools for a range of astronomical objects, although the opacity of the
interstellar medium restricts the majority of observations to sources in our
own galaxy. This review gives a historical overview of EUV astronomy, describes
current instrumental capabilities and examines the prospects for future
facilities on small and medium-class satellite platforms.Comment: Published in Advances in Space Researc
Evidence for an external origin of heavy elements in hot DA white dwarfs
We present a series of systematic abundance measurements for 89 hydrogen
atmosphere (DA-type) white dwarfs with temperatures spanning 16000-77000K drawn
from the FUSE spectral archive. This is the largest study to date of white
dwarfs where radiative forces are significant, exceeding our earlier work,
based mainly on IUE and HST data, by a factor three. Using heavy element
blanketed non-LTE stellar atmosphere calculations, we have addressed the heavy
element abundance patterns making completely objective measurements of
abundance values and their error ranges using a \c{hi}2 fitting technique. We
are able to establish the broad range of abundances seen in a given temperature
range and establish the incidence of stars which appear, in the optical, to be
atmospherically devoid of any material other than H. We compare the observed
abundances to predictions of radiative levitation calculations, revealing
little agreement. We propose that the supply of heavy elements is accreted from
external sources rather than being intrinsic to the star. These elements are
then retained in the white dwarf atmospheres by radiative levitation, a model
that can explain both the diversity of measured abundances for stars of similar
temperature and gravity, including cases with apparently pure H envelopes, and
the presence of photospheric metals at temperatures where radiative levitation
is no longer effective.Comment: 23 pages. 13 Figures, 4 Tables. Accepted for publication in the
Monthly Notices of the Royal Astronomical Societ
Irradiated brown dwarfs
We have observed the post common envelope binary WD0137-349 in the near
infrared , and bands and have determined that the photometry varies
on the system period (116 min). The amplitude of the variability increases with
increasing wavelength, indicating that the brown dwarf in the system is likely
being irradiated by its 16500 K white dwarf companion. The effect of the
(primarily) UV irradiation on the brown dwarf atmosphere is unknown, but it is
possible that stratospheric hazes are formed. It is also possible that the
brown dwarf (an L-T transition object) itself is variable due to patchy cloud
cover. Both these scenarios are discussed, and suggestions for further study
are made.Comment: 5 pages, 2 figures. Proceedings from "Brown dwarfs come of age"
meeting in Fuerteventura 201
Origin of electron cyclotron maser-induced radio emissions at ultra-cool dwarfs: magnetosphere-ionosphere coupling currents
A number of ultra-cool dwarfs emit circularly polarised radio waves generated
by the electron cyclotron maser instability. In the solar system such radio is
emitted from regions of strong auroral magnetic field-aligned currents. We thus
apply ideas developed for Jupiter's magnetosphere, being a well-studied
rotationally-dominated analogue in our solar system, to the case of
fast-rotating UCDs. We explain the properties of the radio emission from UCDs
by showing that it would arise from the electric currents resulting from an
angular velocity shear in the fast-rotating magnetic field and plasma, i.e. by
an extremely powerful analogue of the process which causes Jupiter's auroras.
Such a velocity gradient indicates that these bodies interact significantly
with their space environment, resulting in intense auroral emissions. These
results strongly suggest that auroras occur on bodies outside our solar system.Comment: Accepted for publication in the Astrophysical Journa
A photometric and astrometric investigation of the brown dwarfs in Blanco 1
We present the results of a photometric and astrometric study of the low mass
stellar and substellar population of the young open cluster Blanco 1. We have
exploited J band data, obtained recently with the Wide Field Camera (WFCAM) on
the United Kingdom InfraRed Telescope (UKIRT), and 10 year old I and z band
optical imaging from CFH12k and Canada France Hawaii Telescope (CFHT), to
identify 44 candidate low mass stellar and substellar members, in an area of 2
sq. degrees, on the basis of their colours and proper motions. This sample
includes five sources which are newly discovered. We also confirm the lowest
mass candidate member of Blanco 1 unearthed so far (29MJup). We determine the
cluster mass function to have a slope of alpha=+0.93, assuming it to have a
power law form. This is high, but nearly consistent with previous studies of
the cluster (to within the errors), and also that of its much better studied
northern hemisphere analogue, the Pleiades.Comment: 8 Pages, 5 Figures, 2 Tables and 1 Appendix. Accepted for publication
in MNRA
WD0837+185:the formation and evolution of an extreme mass ratio white dwarf-brown dwarf binary in Praesepe
There is a striking and unexplained dearth of brown dwarf companions in close
orbits (< 3AU) around stars more massive than the Sun, in stark contrast to the
frequency of stellar and planetary companions. Although rare and relatively
short-lived, these systems leave detectable evolutionary end points in the form
of white dwarf - brown dwarf binaries and these remnants can offer unique
insights into the births and deaths of their parent systems. We present the
discovery of a close (orbital separation ~ 0.006 AU) substellar companion to a
massive white dwarf member of the Praesepe star cluster. Using the cluster age
and the mass of the white dwarf we constrain the mass of the white dwarf
progenitor star to lie in the range 3.5 - 3.7 Msun (B9). The high mass of the
white dwarf means the substellar companion must have been engulfed by the B
star's envelope while it was on the late asymptotic giant branch (AGB). Hence,
the initial separation of the system was ~2 AU, with common envelope evolution
reducing the separation to its current value. The initial and final orbital
separations allow us to constrain the combination of the common envelope
efficiency (alpha) and binding energy parameters (lambda) for the AGB star to
alpha lambda ~3. We examine the various formation scenarios and conclude that
the substellar object was most likely to have been captured by the white dwarf
progenitor early in the life of the cluster, rather than forming in situ.Comment: Accepted for publication in ApJ
Hubble Space Telescope observations of the NUV transit of WASP-12b
We present new observations of four closely-spaced NUV transits of the hot
Jupiter-like exoplanet WASP-12b using HST/COS, significantly increasing the
phase resolution of the observed NUV light curve relative to previous
observations, while minimising the temporal variation of the system. We observe
significant excess NUV absorption during the transit, with mean normalised
in-transit fluxes of , i.e. 2-5
deeper than the optical transit level of for a uniform stellar
disk (the exact confidence level depending on the normalisation method used).
We further observe an asymmetric transit shape, such that the post-conjunction
fluxes are overall 2-3 higher than pre-conjunction values, and
characterised by rapid variations in count rate between the pre-conjunction and
out of transit levels. We do not find evidence for an early ingress to the NUV
transit as suggested by earlier HST observations. However, we show that the NUV
count rate observed prior to the optical transit is highly variable, but
overall 2.2-3.0 below the post-transit values and comparable
in depth to the optical transit, possibly forming a variable region of NUV
absorption from at least phase 0.83, limited by the data coverage.Comment: Accepted into the Astrophysical Journa
A LOFAR mini-survey for low-frequency radio emission from the nearest brown dwarfs
We have conducted a mini-survey for low-frequency radio emission from some of the closest brown dwarfs to the Sun with rapid rotation rates: SIMP J013656.5 +093347, WISEPC 150649.97+702736.0, and WISEPA J174124.26+255319.5.We have placed robust 3s upper limits on the flux density in the 111 – 169 MHz frequency range for these targets: WISE 1506: < 0:72 mJy; WISE 1741: < 0:87 mJy; SIMP 0136: < 0:66 mJy. At 8 hours of integration per target to achieve these limits, we find that systematic and detailed study of this class of object at LOFAR frequencies will require a substantial dedication of resources
- …