440 research outputs found
Detection and measurement of planetary systems with GAIA
We use detailed numerical simulations and the Andromedae,
planetary system as a template to evaluate the capability of the ESA
Cornerstone Mission GAIA in detecting and measuring multiple planets around
solar-type stars in the neighborhood of the Solar System. For the outer two
planets of the Andromedae, system, GAIA high-precision global
astrometric measurements would provide estimates of the full set of orbital
elements and masses accurate to better than 1--10%, and would be capable of
addressing the coplanarity issue by determining the true geometry of the system
with uncertainties of order of a few degrees. Finally, we discuss the
generalization to a variety of configurations of potential planetary systems in
the solar neighborhood for which GAIA could provide accurate measurements of
unique value for the science of extra-solar planets.Comment: 4 pages, 2 pictures, accepted for publication in A&A Letter
Narrow-Angle Astrometry with the Space Interferometry Mission: The Search for Extra-Solar Planets. II. Detection and Characterization of Planetary Systems
(Abridged) The probability of detecting additional companions is essentially
unchanged with respect to the single-planet configurations, but after fitting
and subtraction of orbits with astrometric signal-to-noise ratio
the false detection rates can be enhanced by up to a
factor 2; the periodogram approach results in robust multiple-planet detection
for systems with periods shorter than the SIM mission length, even at low
values of , while the least squares technique combined with
Fourier series expansions is arguably preferable in the long-period regime. The
accuracy on multiple-planet orbit reconstruction and mass determination suffers
a typical degradation of 30-40% with respect to single-planet solutions; mass
and orbital inclination can be measured to better than 10% for periods as short
as 0.1 yr, and for as low as , while
is required in order to measure with similar
accuracy systems harboring objects with periods as long as three times the
mission duration. For systems with all components producing
or greater, quasi-coplanarity can be reliably
established with uncertainties of a few degrees, for periods in the range
yr; in systems where at least one component has
, coplanarity measurements are compromised, with typical
uncertainties on the mutual inclinations of order of . Our
findings are illustrative of the importance of the contribution SIM will make
to the fields of formation and evolution of planetary systems.Comment: 61 pages, 14 figures, 5 tables, to appear in the September 2003 Issue
of the Publications of the Astronomical Society of the Pacifi
Testing Planet Formation Models with Gaia as Astrometry
In this paper, we first summarize the results of a large-scale double-blind
tests campaign carried out for the realistic estimation of the Gaia potential
in detecting and measuring planetary systems. Then, we put the identified
capabilities in context by highlighting the unique contribution that the Gaia
exoplanet discoveries will be able to bring to the science of extrasolar
planets during the next decade.Comment: 4 pages, 1 figure. To appear in the proceedings of "IAU Symposium 248
- A Giant Step: from Milli- to Micro-arcsecond Astrometry", held in Shanghai,
China, 15-19 Oct. 200
Cosmic Gravitational Shear from the HST Medium Deep Survey
We present a measurement of cosmic shear on scales ranging from 10\arcsec
to 2\arcmin in 347 WFPC2 images of random fields. Our result is based on
shapes measured via image fitting and on a simple statistical technique;
careful calibration of each step allows us to quantify our systematic
uncertainties and to measure the cosmic shear down to very small angular
scales. The WFPC2 images provide a robust measurement of the cosmic shear
signal decreasing from at 10\arcsec to at 130\arcsec .Comment: 4 pages 2 Postscript figures, uses emulateapj.cls Astrophysical
Journal Letters, December 1, 200
A 2.4% DETERMINATION of the LOCAL VALUE of the HUBBLE CONSTANT
We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on 300 SNe Ia at z < 0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25, 2.51, 72.04,2.67, 76.18,2.37, and 74.50,3.27 km s-1 Mpc-1, respectively. Our best estimate of H 0 = 73.24, 1.74 km s-1 Mpc-1 combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4σ higher than 66.93, 0.62 km s-1 Mpc-1 predicted by ΛCDM with 3 neutrino flavors having a mass of 0.06 eV and the new Planck data, but the discrepancy reduces to 2.1σ relative to the prediction of 69.3, 0.7 km s-1 Mpc-1 based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H 0 at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of ΔN eff ≈ 0.4-1. We anticipate further significant improvements in H 0 from upcoming parallax measurements of long-period MW Cepheid
- …