38 research outputs found

    Exploration of the global antioxidant capacity of the stratum corneum by cyclic voltammetry

    Get PDF
    Cyclic voltammetry is proposed as a new method for evaluating the antioxidant capacity of skin based on the reducing properties of low molecular weight antioxidants (LMWA). Experiments were performed simply by recording the anodic current at 0.9 V/SCE of a platinum microelectrode placed directly on the epidermis surface without any gel or water. This method ensured a direct, rapid (less than 1 min), reliable (accuracy 12%) and non-invasive measurement of the global antioxidant capacity of the stratum corneum with a high spatiotemporal resolution. At the same time, the pH of the skin surface was determined by recording the cathodic current at 0 V/SCE. Based on an exploratory study involving nine volunteer subjects, the evolution of the amperometric response of the microelectrode with time revealed a periodic modification of the redox properties

    Influence of Using Metallic Na on the Interfacial and Transport Properties of Na-Ion Batteries

    Get PDF
    Na2Ti3O7 is a promising negative electrode for rechargeable Na-ion batteries; however, its good properties in terms of insertion voltage and specific capacity are hampered by the poor capacity retention reported in the past. The interfacial and ionic/electronic properties are key factors to understanding the electrochemical performance of Na2Ti3O7. Therefore, its study is of utmost importance. In addition, although rather unexplored, the use of metallic Na in half-cell studies is another important issue due to the fact that side-reactions will be induced when metallic Na is in contact with the electrolyte. Hence, in this work the interfacial and transport properties of full Na-ion cells have been investigated and compared with half-cells upon electrochemical cycling by means of X-ray photoelectron spectroscopy (conventional XPS and Auger parameter analysis) and electrochemical impedance spectroscopy. The half-cell has been assembled with C-coated Na2Ti3O7 against metallic Na whilst the full-cell uses C-coated Na2Ti3O7 as negative electrode and NaFePO4 as positive electrode, delivering 112 Wh/kganode+cathode in the 2nd cycle. When comparing both types of cells, it has been found that the interfacial properties, the OCV (open circuit voltage) and the electrode—electrolyte interphase behavior are more stable in the full-cell than in the half-cell. The electronic transition from insulator to conductor previously observed in a half-cell for Na2Ti3O7 has also been detected in the full-cell impedance analysis

    A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage

    Get PDF
    Ordered and disordered carbonaceous materials cover a wide range of the energy storage materials market. In this work a thorough analysis of the Small Angle X-ray Scattering (SAXS) patterns of a number of carbon samples for energy storage (including graphite, soft carbon, hard carbon, activated carbon, glassy carbon and carbide-derived carbon) is shown. To do so, innovative geometrical models to describe carbon X-ray scattering have been built to refine the experimental SAXS data. The results obtained provide a full description of the atomic and pore structures of these carbons that in some cases challenge more traditional models. The correlative analysis of the descriptors here used provide novel insight into disordered carbons and can be used to shed light in charge storage mechanisms and to design improved carbonaceous materials

    Role of the voltage window on the capacity retention of P2-Na2_{2}/3_{3}[Fe1_{1}/2_{2}Mn1_{1}/2_{2}]O2_{2} cathode material for rechargeable sodium-ion batteries

    Get PDF
    P2-Na2_{2}/3_{3}[Fe1_{1}/2_{2}Mn1_{1}/2_{2}]O2_{2} layered oxide is a promising high energy density cathode material for sodium-ion batteries. However, one of its drawbacks is the poor long-term stability in the operating voltage window of 1.5–4.25 V vs Na+^{+}/Na that prevents its commercialization. In this work, additional light is shed on the origin of capacity fading, which has been analyzed using a combination of experimental techniques and theoretical methods. Electrochemical impedance spectroscopy has been performed on P2-Na2_{2}/3_{3}[Fe1_{1}/2_{2}Mn1_{1}/2_{2}]O2_{2} half-cells operating in two different working voltage windows, one allowing and one preventing the high voltage phase transition occurring in P2-Na2_{2}/3_{3}[Fe1_{1}/2_{2}Mn1_{1}/2_{2}]O2_{2} above 4.0 V vs Na+/Na; so as to unveil the transport properties at different states of charge and correlate them with the existing phases in P2-Na2_{2}/3_{3}[Fe1_{1}/2_{2}Mn1_{1}/2_{2}]O2_{2}. Supporting X-ray photoelectron spectroscopy experiments to elucidate the surface properties along with theoretical calculations have concluded that the formed electrode-electrolyte interphase is very thin and stable, mainly composed by inorganic species, and reveal that the structural phase transition at high voltage from P2- to “Z”/OP4-oxygen stacking is associated with a drastic increased in the bulk electronic resistance of P2-Na2_{2}/3_{3}[Fe1_{1}/2_{2}Mn1_{1}/2_{2}]O2_{2} electrodes which is one of the causes of the observed capacity fading

    Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4

    Get PDF
    Classical electrodes for Li-ion technology operate by either single-phase or two-phase Li insertion/de-insertion processes, with single-phase mechanisms presenting some intrinsic advantages with respect to various storage applications. We report the feasibility to drive the well-established two-phase room-temperature insertion process in LiFePO4 electrodes into a single-phase one by modifying the material's particle size and ion ordering. Electrodes made of LiFePO4 nanoparticles (40 nm) formed by a low-temperature precipitation process exhibit sloping voltage charge/discharge curves, characteristic of a single-phase behaviour. The presence of defects and cation vacancies, as deduced by chemical/physical analytical techniques, is crucial in accounting for our results. Whereas the interdependency of particle size, composition and structure complicate the theorists' attempts to model phase stability in nanoscale materials, it provides new opportunities for chemists and electrochemists because numerous electrode materials could exhibit a similar behaviour at the nanoscale once their syntheses have been correctly worked out

    Estudi de l'elèctrode positiu en bateries de níquel : síntesi industrial, microestructura i rendiment electroquímic /

    No full text
    Consultable des del TDXTítol obtingut de la portada digitalitzadaL'elèctrode d'oxihidròxid de níquel (NOE) s'ha emprat en dispositius d'emmagatzemament d'energia des de principis del segle XX i avui dia el seu domini d'aplicaci«o «es encara extremament extens, ja que comprèn des de les bateries per a aparells portàtils fins a les destinades a aplicacions aeronàutiques i espacials o el vehicle elèctric. Això no obstant, degut tant a la seva complexitat intrínseca com al fet que el seu desenvolupament ha estat fonamentalment basat en criteris empírics, encara no es té una total comprensió del seu mecanisme d'operació. Aquest treball es centra en l'estudi del NOE, tant des d'un punt de vista aplicat com fonamental, a fi d'optimitzar el procés de fabricació industrial de la matèria activa i comprendre millor les seves característiques microestructurals i la influència d'aquestes en el rendiment electroquímic. Primerament s'han estudiat individualment en una planta pilot les diferents etapes d'un procés de síntesi industrial real, comparant les característiques del producte final amb les d'altres matèries actives comercials. Els resultats obtinguts han permès de proposar modificacions en el procés industrial que resulten en una millora significativa del rendiment electroquímic de la matèria activa preparada. En segon lloc s'ha dut a terme una recerca de caire més fonamental amb l'objectiu de realitzar un estudi microestructural rigorós de diverses mostres de ß-Ni(OH)2, tant industrials com preparades al laboratori, i establir correlacions entre les característiques microestructurals i el rendiment electroquímic. Per a assolir-ho, s'ha desenvolupat el nou programa d'afinament de dades de difracció de pols FAULTS el qual, igualment com el mètode Rietveld, s'ha emprat per a l'estudi de les mostres. Finalment, en la darrera etapa d'aquest treball, s'ha estudiat la transformació ß-Ni(OH)2/ß-NiOOH i l'estructura de la fase oxidada mitjançant la difracció de pols i la microscòpia electrònica de transmissió.El electrodo de oxohidróxido de níquel (NOE) se ha utilizado en dispositivos de almacenaje de energía desde principios del s.XX y actualmente su dominio de aplicación es todavía extremadamente vasto, abarcando desde las baterías para aparatos port«atiles hasta las destinadas a aplicaciones aeron«auticas y espaciales o el vehículo eléctrico. Sin embargo, debido tanto a su complejidad intrínseca como al hecho que su desarrollo ha estado basado fundamentalmente en criterios empíricos, hoy día todavía no se tiene una total comprensión de su mecanismo de operación. Este trabajo se centra en el estudio del NOE, tanto desde un punto de vista aplicado como fundamental, a fin de optimizar el proceso de fabricación industrial de la materia activa y comprender mejor sus características microestructurales y la infiuencia de éstas en el rendimiento electroquímico. En primer lugar, se han estudiado individualmente en una planta piloto las diferentes etapas de un proceso de síntesis industrial real, comparando las características del producto final con las de otras materias activas comerciales. Los resultados obtenidos han permitido proponer modificaciones en el proceso de síntesis industrial que dan como resultado una mejora significativa en el rendimiento electroquímico de la materia activa preparada. En segundo lugar se ha realizado una investigación de carácter más fundamental con el objetivo de realizar un estudio microestructural riguroso de distintas muestras de ß-Ni(OH)2, ya sean industriales como preparadas en el laboratorio, y establecer correlaciones entre las características microestructurales y el rendimiento electroquímico. Para ello se ha desarrollado el programa de refinamiento de datos de difracción de polvo FAULTS, el cual, junto con el método Rietveld, se ha utilizado para el estudio de las muestras. Finalmente, en la última etapa del presente trabajo se ha estudiado la transformación ß-Ni(OH)2/ß-NiOOH y la estructura de la fase oxidada mediante la difracción de polvo y la microscopia electrónica de transmisión.The nickel oxyhydroxide electrode (NOE) has been used in energy storage devices since the beginning of the 20th century and nowadays covers a large number of applications ranging from batteries for portable devices to those used in aeronautic and space applications or electric vehicles. Nevertheless, due both to its intrinsic complexity and to the fact that its development has been mainly based in empirical criteria, its operational mechanism is still not fully understood. This work is focused in the study of the NOE from both an applied and fundamental point of view in order to optimise the industrial fabrication process of the active material and to achieve a better comprehension of the microstructural characteristics and their efiect in the electrochemical performance. First, the steps of a real industrial synthetic process have been studied individually, comparing the properties of the final product with those of other several commercial active materials. The results obtained have allowed the proposal of some modifications in the industrial process that may lead to an improvement of the electrochemical performances of the prepared active material. After that, a more fundamental research has been carried out to achieve a thorough microstructural characterisation of several ß-Ni(OH)2 samples, both industrial and laboratory prepared, in order to establish some correlations between the microstructural features and the electrochemical performances. This has been achieved developing a new difiraction data refinement program, FAULTS, that, in combination with the Rietveld method, has been applied to the study of the samples. Finally, in the last step of this work, the transformation ß-Ni(OH)2/ß-NiOOH and the structure of the oxidised phase have been studied with both powder difiraction and transmission electron microscopy

    Blended Positive Electrodes for Li‐Ion Batteries: From Empiricism to Rational Design

    No full text
    Physical mixtures (i. e. blends) of two or more active materials are often used in commercial batteries to achieve better performance than what can be attained with a single component. This approach has been empirically driven and found to result in relevant synergistic improvements that are unfortunately poorly understood at a fundamental level. Indeed, internal redox processes (which induce structural changes in the components) can take place in blended electrodes that are severely influenced by electrode kinetics. These are in turn affected by temperature and also electrode formulation. Despite difficulties ahead, efforts to understand such issues are needed to pave the way for a rational electrode design enabling optimized performance which ideally could be tuned to match specific application requirements.Authors are grateful to ALISTORE‐ERI colleagues for helpful discussions. ICMAB‐CSIC members thank the Spanish Ministry for Economy, Industry and Competitiveness Severo Ochoa Programme for Centres of Excellence in R&D (CEX2019‐000917‐S) and funding through grant MAT2017‐86616‐R. MCC is also grateful to Spanish Ministry for Economy, Industry and Competitiveness for funding through grant PID2019‐107106RB‐C33.Peer reviewe

    Microstructural analysis of nickel hydroxide: Anisotropic size versus stacking faults

    No full text
    11 pages.-- PACS: 61.72.Nn; 61.10.Nz; 61.72.Ff; 68.37.LpTwo different approaches for studying sample's contributions to diffraction-line broadening are analyzed by applying them to several nickel hydroxide samples. Both are based in the refinement of powder diffraction data but differ in the microstructural model used. The first one consists in the refinement of the powder diffraction pattern using the FAULTS program, a modification of DIFFaX, which assigns peak broadening mainly to the presence of stacking faults and treats finite size effects by convolution with a Voigt function. The second method makes use of the program FULLPROF, which allows the use of linear combinations of spherical harmonics to model peak broadening coming from anisotropic size effects. The complementary use of transmission electron microscopy has allowed us to evaluate the best approach for the Ni(OH)2 case. In addition, peak shifts, corresponding to reflections 10l (l0) were observed in defective nickel hydroxide samples that can be directly correlated with the degree of faulting.Peer reviewe
    corecore