52 research outputs found

    Elimination of HIV-1-infected cells by broadly neutralizing antibodies.

    Get PDF
    International audienceThe Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir

    The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells

    Get PDF
    The cytidine deaminase APOBEC3G (A3G) enzyme exerts an intrinsic anti–human immunodeficiency virus (HIV) defense by introducing lethal G-to-A hypermutations in the viral genome. The HIV-1 viral infectivity factor (Vif) protein triggers degradation of A3G and counteracts this antiviral effect. The impact of A3G on the adaptive cellular immune response has not been characterized. We examined whether A3G-edited defective viruses, which are known to express truncated or misfolded viral proteins, activate HIV-1–specific (HS) CD8+ cytotoxic T lymphocytes (CTLs). To this end, we compared the immunogenicity of cells infected with wild-type or Vif-deleted viruses in the presence or absence of the cytidine deaminase. The inhibitory effect of A3G on HIV replication was associated with a strong activation of cocultivated HS-CTLs. CTL activation was particularly marked with Vif-deleted HIV and with viruses harboring A3G. Enzymatically inactive A3G mutants failed to enhance CTL activation. We also engineered proviruses bearing premature stop codons in their genome as scars of A3G editing. These viruses were not infectious but potently activated HS-CTLs. Therefore, the pool of defective viruses generated by A3G represents an underestimated source of viral antigens. Our results reveal a novel function for A3G, acting not only as an intrinsic antiviral factor but also as an inducer of the adaptive immune system

    Characterization of Reemerging Chikungunya Virus

    Get PDF
    An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host

    Tetherin Restricts Productive HIV-1 Cell-to-Cell Transmission

    Get PDF
    The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24) impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or ΔVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of ΔVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread

    Restricting HIV the SAMHD1 way: through nucleotide starvation.

    No full text
    International audienceHIV replication is limited by cellular restriction factors, such as APOBEC and tetherin, which themselves are counteracted by viral proteins. SAMHD1 was recently identified as a novel HIV restriction factor in myeloid cells, and was shown to be blocked by the lentiviral protein Vpx. SAMHD1 limits viral replication through an original mechanism: it hydrolyses intracellular dNTPs in non-cycling cells, thus decreasing the amount of these key substrates, which are required for viral DNA synthesis. In this Progress article, we describe how SAMHD1 regulates the pool of intracellular nucleotides to control HIV replication and the innate immune response

    SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells.

    No full text
    International audienceSAMHD1 is a viral restriction factor expressed in dendritic cells and other cells, inhibiting infection by cell-free human immunodeficiency virus type 1 (HIV-1) particles. SAMHD1 depletes the intracellular pool of deoxynucleoside triphosphates, thus impairing HIV-1 reverse transcription and productive infection in noncycling cells. The Vpx protein from HIV-2 or simian immunodeficiency virus (SIVsm/SIVmac) antagonizes the effect of SAMHD1 by triggering its degradation. A large part of HIV-1 spread occurs through direct contacts between infected cells and bystander target cells. Here, we asked whether SAMHD1 impairs direct HIV-1 transmission from infected T lymphocytes to monocyte-derived dendritic cells (MDDCs). HIV-1-infected lymphocytes were cocultivated with MDDCs that have been pretreated or not with Vpx or with small interfering RNA against SAMHD1. We show that in the cocultures, SAMHD1 significantly inhibits productive cell-to-cell transmission to target MDDCs and prevents the type I interferon response and expression of the interferon-stimulated gene MxA. Therefore, SAMHD1, by controlling the sensitivity of MDDCs to HIV-1 infection during intercellular contacts, impacts their ability to sense the virus and to trigger an innate immune response

    CD4 and Major Histocompatibility Complex Class I Downregulation by the Human Immunodeficiency Virus Type 1 Nef Protein in Pediatric AIDS Progression

    No full text
    The human immunodeficiency virus type 1 (HIV-1) nef gene is a crucial determinant in AIDS disease progression. Although several in vitro activities have been attributed to the Nef protein, identifying the one critical for in vivo pathogenicity remains elusive. In this study, we examined a large number of nef alleles derived at various time points from 13 perinatally infected children showing different progression rates: six nonprogressors (NPs), three slow progressors (SPs), and four rapid progressors (RPs). The patient-derived nef alleles were analyzed for their steady-state expression of a Nef protein, for their relative ability to downregulate cell surface expression of CD4 and major histocompatibility complex class I (MHC-I) and for their capacity to bind the clathrin adaptor AP-1 complex. We found that NP-derived nef alleles, compared to nef alleles isolated from SPs and RPs, had reduced CD4 and MHC-I downregulation activities. In contrast, SP- and RP-derived nef alleles did not differ and efficiently downregulated both CD4 and MHC-I. AP-1 binding was a conserved function of primary nef alleles not correlated with clinical progression. Defective Nef proteins from NPs, rather than sharing common specific changes in their sequences, accumulated various amino acid substitutions, mainly located outside the conserved domains previously associated with Nef biological properties. Our data indicate that Nef-mediated downregulation of cell surface CD4 and MHC-I significantly contributes to the expression of the pathogenic potential of HIV-1

    HIV-1 Nef promotes the localization of Gag to the cell membrane and facilitates viral cell-to-cell transfer

    Get PDF
    International audienceBackgroundNewly synthesized HIV-1 particles assemble at the plasma membrane of infected cells, before being released as free virions or being transferred through direct cell-to-cell contacts to neighboring cells. Localization of HIV-1 Gag precursor at the cell membrane is necessary and sufficient to trigger viral assembly, whereas the GagPol precursor is additionally required to generate a fully matured virion. HIV-1 Nef is an accessory protein that optimizes viral replication through partly defined mechanisms. Whether Nef modulates Gag and/or GagPol localization and assembly at the membrane and facilitates viral cell-to-cell transfer has not been extensively characterized so far.ResultsWe report that Nef increases the total amount of Gag proteins present in infected cells, and promotes Gag localization at the cell membrane. Moreover, the processing of p55 into p24 is improved in the presence of Nef. We also examined the effect of Nef during HIV-1 cell-to-cell transfer. We show that without Nef, viral transfer through direct contacts between infected cells and target cells is impaired. With a nef-deleted virus, the number of HIV-1 positive target cells after a short 2h co-culture is reduced, and viral material transferred to uninfected cells is less matured. At later time points, this defect is associated with a reduction in the productive infection of new target cells.ConclusionsOur results highlight a previously unappreciated role of Nef during the viral replication cycle. Nef promotes HIV-1 Gag membrane localization and processing, and facilitates viral cell-to-cell transfer
    corecore