5,645 research outputs found
Antenna and radome loss measurements for MFMR and PMIS with appendix on MFMR/PMIS computer programs
The NMSU/PSL radiometer antenna calibration facility is described, and the antenna and radome loss measurements made on the passive microwave imaging system and the multifrequency microwave radiometer are summarized. Antenna/radome data reduction techniques, estimation of sky brightness temperatures, and bucket performance tests are presented along with radiometer computer programs
SAR antenna calibration techniques
Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach
Antenna evaluation study for the shuttle multispectral radar, phase 1
Critical parameters of the shuttle multispectral radar antenna (SMRA) which most affect antenna performance were identified. A preliminary methematical model is presented for describing SMRA performance under the influence of various physical and environmental factors which might degrade performance. Because user groups have not agreed on optimum frequencies best suited for the broadest range of application, the study incorporates frequencies ranging from 1.2 to 14.5 GHz, as well as a consideration of incidence angles from near nadir to nearly 50 deg
TRIAD - Preliminary design of an operational earth resources survey system. 1969 summer faculty fellowship program in engineering systems design
TRIAD, preliminary design of operational earth resources survey syste
Antenna evaluation study for the shuttle multispectral radar, phase 2
The results of the second phase of the Antenna Evaluation Study for the Shuttle Imaging Radar are presented. The objectives of Phase II were (1) to complete the specifications for the subarray test panels, (2) to begin a study of the effects of electrical and mechanical tolerance variations on overall SIRA performance, (3) to initiate the development of a mathematical model which adequately described the array performance and (4) to begin the development of a comprehensive computer program which will eventually simulate the performance characteristics of the antenna in a spaceborne environment. Items (2), (3), and (4) were begun in Phase I (ahead of schedule), and because of this, it has been possible to accelerate the Phase II modeling/simulation objectives to the point where simulations of expected mechanical/electrical errors have already been produced
TRIAD - Preliminary design of an operational earth resources survey system Final report
Design of operational earth resources survey syste
Infrared Radiative Forcing and Atmospheric Lifetimes of Trace Species Based on Observations from UARS
Observations from instruments on the Upper Atmosphere Research Satellite (UARS) have been used to constrain calculations of infrared radiative forcing by CH4, CCl2F2 and N2O, and to determine lifetimes Of CCl2F2 and N2O- Radiative forcing is calculated as a change in net infrared flux at the tropopause that results from an increase in trace gas amount from pre-industrial (1750) to contemporary (1992) times. Latitudinal and seasonal variations are considered explicitly, using distributions of trace gases and temperature in the stratosphere from UARS measurements and seasonally averaged cloud statistics from the International Satellite Cloud Climatology Project. Top-of-atmosphere fluxes calculated for the contemporary period are in good agreement with satellite measurements from the Earth Radiation Budget Experiment. Globally averaged values of the radiative forcing are 0.536, 0.125, and 0.108 W m-2 for CH4, CCl2F2, and N2O, respectively. The largest forcing occurs near subtropical latitudes during summer, predominantly as a result of the combination of cloud-free skies and a high, cold tropopause. Clouds are found to play a significant role in regulating infrared forcing, reducing the magnitude of the forcing by 30-40% compared to the case of clear skies. The vertical profile of CCl2F2 is important in determining its radiative forcing; use of a height-independent mixing ratio in the stratosphere leads to an over prediction of the forcing by 10%. The impact of stratospheric profiles on radiative forcing by CH4 and N2O is less than 2%. UARS-based distributions of CCl2F2 and N2O are used also to determine global destruction rates and instantaneous lifetimes of these gases. Rates of photolytic destruction in the stratosphere are calculated using solar ultraviolet irradiances measured on UARS and a line-by-line model of absorption in the oxygen Schumann-Runge bands. Lifetimes are 114 +/- 22 and 118 +/- 25 years for CCl2F2 and N2O, respectively
Cellular uptake and intracellular trafficking of oligonucleotides: Implications for oligonucleotide pharmacology
Oligonucleotides manifest much promise as potential therapeutic agents. However, understanding of how oligonucleotides function within living organisms is still rather limited. A major concern in this regard is the mechanisms of cellular uptake and intracellular trafficking of both 'free' oligonucleotides and oligonucleotides associated with various polymeric or nanocarrier delivery systems. Here we review basic aspects of the mechanisms of endocytosis and intracellular trafficking and how insights from these processes can be used to understand oligonucleotide delivery. In particular we discuss opportunities for escape of oligonucleotides from endomembrane compartments and describe recent studies using small molecules to enhance oligonucleotide effects
- …