62 research outputs found
Conformational insights and vibrational study of a promising anticancer agent: the role of the ligand in Pd(ii)âamine complexes
This study reports the first complete vibrational analysis of a dinuclear polyamine-based compound displaying antitumour properties.</p
Characterization of decavanadate and decaniobate solutions by Raman spectroscopy
The decaniobate ion, (Nb10 = [Nb10O28]6â) being isoelectronic and isostructural with the decavanadate
ion (V10 = [V10O28]6â), but chemically and electrochemically more inert, has been useful in advancing the
understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry
of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V10
show that this vanadate species dominates up to pH 6.45 whereas it remains detectable until pH 8.59,
which is an important range for biochemistry. Similarly, Nb10 is present between pH 5.49 and 9.90 and
this species remains detectable in solution up to pH 10.80. V10 dissociates at most pH values into smaller
tetrahedral vanadate oligomers such as V1 and V2, whereas Nb10 dissociates into Nb6 under mildly (10 >
pH > 7.6) or highly alkaline conditions. Solutions of V10 and Nb10 are both kinetically stable under basic pH
conditions for at least two weeks and at moderate temperature. The Raman method provides a means of
establishing speciation in the difficult niobate system and these findings have important consequences for
toxicology activities and pharmacological applications of vanadate and niobate polyoxometalates
Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca2+-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition
Recently we demonstrated that the decavanadate (V10) ion is a stronger Ca2+-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V10 interaction is not affected by any of the protein conformations that occur during the process of calcium translocation
(i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb10 = Nb10O28]6â, is a useful tool
in deducing the interaction and the non-competitive Ca2+-ATPase inhibition by the decavanadate ion [V10 = V10O28]6â. Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive
V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca2+-
ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V10, Nb10 and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause
changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V10 and Nb10
decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V10 to inhibit the Ca2+-
ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and
polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.MA thanks CCMAR; LAEBC and MPMM thank QFM-UC for
financial support. CAO is grateful for a QEII fellowship and
Discovery Project grant (DP110105530) from the Australian
Research Council. WHC acknowledges support from the U.S.
Department of Energy Office of Basic Energy Science via grant
DE-FG02-05ER15693, the National Science Foundation via
EAR-0814242 and an NSF CCI grant through the Center for
Sustainable Materials Chemistry, number CHE-1102637
In-Situ Anaerobic Heating of Human Bones Probed by Neutron Diffraction
The first neutron diffraction study of in-situ anaerobic burning of human bones is reported, aiming at an interpretation of heat-induced changes in bone, which were previously detected by vibrational spectroscopy, including inelastic neutron scattering techniques. Structural and crystallinity variations were monitored in samples of the human femur and tibia, as well as a reference hydroxyapatite, upon heating under anaerobic conditions. Information on the structural reorganization of the bone matrix as a function of temperature, from room temperature to 1000 °C, was achieved. Noticeable crystallographic and domain size variations, together with OâH bond lengths and background variations, were detected. Above 700 °C, the inorganic bone matrix became highly symmetric, devoid of carbonates and organic constituents, while for the lower temperature range (<700 °C), a considerably lower crystallinity was observed. The present pilot study is expected to contribute to a better understanding of the heat-prompted changes in bone, which can be taken as biomarkers of the burning temperature. This information is paramount for bone analysis in forensic science as well as in archeology and may also have useful applications in other biomaterial studies.info:eu-repo/semantics/publishedVersio
Infrared spectroscopy to assess manufacturing procedures of bone artefacts from the chalcolithic settlement of Vila Nova de SĂŁo Pedro (Portugal)
Vibrational spectroscopy was applied to study cylindrical engraved bone boxes from the Chalcolithic settlement of Vila Nova de SĂŁo Pedro (VNSP, Azambuja, Portugal) which has the largest and richest artefact assemblage of Copper Age Western Iberia. The objectives were to reconstitute manufacturing techniques, determine the role of pyrotechnology in the production of cylindrical engraved bone boxes and assess oxygen conditions during burning. Four fragments of cylindrical engraved bone âboxesâ from VNSP were used in this research. Anaerobic experimental burn conditions were recreated by using a home-made steel airtight chamber under vacuum. Human bone fragments were burnt at 400â1000 °C for 120â211 min. Fourier-transform infrared spectroscopy analyses were performed on bone powder samples. The resulting spectra and chemometric indices were used as a reference to establish comparisons with the archaeological artefacts. None of these presented spectral features compatible with anaerobic burning. Therefore, aerobic burns were used to achieve the whitish look and were most probably used to attain the darker shade displayed by the artefacts. Artefact manufacturing appears to have relied on bone cutting, bone engraving and maybe polishing, followed by heat treatment. The population from VNSP appears to have been highly specialized in the use of fire to work different raw materials.info:eu-repo/semantics/publishedVersio
Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments
Arundo donax, Cortaderia selloana and Phragmites australis are high-biomass-producing perennial Poalean species that grow abundantly and spontaneously in warm temperate regions, such as in Mediterranean-type climates, like those of Southern Europe, Western United States coastal areas, or in regions of South America, South Africa and Australia. Given their vigorous and spontaneous growth, biomass from the studied grasses often accumulates excessively in unmanaged agro-forestry areas. Nonetheless, this also creates the demand and opportunity for the valorisation of these biomass sources, particularly their cell wall polymers, for biorefining applications. By contrast, a related crop, Miscanthus Ă giganteus, is a perennial grass that has been extensively studied for lignocellulosic biomass production, as it can grow on low-input agricultural systems in colder climates. In this study Fourier transform mid-infrared spectroscopy (FTIR), high-performance anion-exchange chromatography (HPAEC) and lignin content determinations were used for a comparative compositional characterisation of A. donax, C. selloana and P. australis harvested from the wild, in relation to a trial field-grown M. Ă giganteus high-yielding genotype. A high-throughput saccharification assay showed relatively high sugar release values from the wild-grown grasses, even with a 0.1M NaOH mild alkali pretreatment. In addition to this alkaline pretreatment, biomass was treated with white-rot fungi (WRF), which preferentially degrade lignin more readily than holocellulose. Three fungal species were used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Our results showed that neutral sugar contents are not significantly altered, while some lignin is lost during the pretreatments. Furthermore, sugar release upon enzymatic saccharification was enhanced, and this was dependent on the plant biomass and fungal species used in the treatment. To maximise the potential for lignocellulose valorisation, the liquid fractions from the pretreatments were analysed by high performance liquid chromatography â photodiode array detection â electrospray ionisation tandem mass spectrometry (HPLC-PDA-ESI-MS(n)). This study is one of the first to report on the composition of WRF-treated grass biomass, while assessing the potential relevance of breakdown products released during the treatments, beyond more traditional sugar-for-energy applications. Ultimately, we expect that our data will help promote the valorisation of unused biomass resources, create economic value, while contributing to the implementation of sustainable biorefining systems
FTIR Screening to Elucidate Compositional Differences in Maize Recombinant Inbred Lines with ContrastingSaccharification Efficiency Yields
With a high potential to generate biomass, maize stover arises as an outstanding feedstock for biofuel production. Maize stover presents the added advantage of being a multiple exploitation of the crop as a source of food, feed, and energy. In this study, contrasting groups of recombinant inbred lines (RILs) from a maize multiparent advanced generation intercross (MAGIC) population that showed variability for saccharification efficiency were screened by FTIR-ATR spectroscopy to explore compositional differences between high and low saccharification yielders. High and low saccharification efficiency groups differed in cell wall compositional features: high saccharification RILs displayed higher proportions of S subunits, aromatic compounds, and hemicellulose as opposed to low saccharification efficiency groups in which FTIR predicted higher proportions of lignin, more precisely lignin being richer in subunits G, and greater proportions of crystalline cellulose and acetyl methyl esters. The application of FTIR-ATR spectroscopy in this material allowed us to obtain a rapid and broad vision of cell wall compositional features in contrasting groups of saccharification efficiency. These results helped us to deepen our knowledge into the relationship between cell wall composition and biorefining potential; they also allowed us to establish new targets for future research regarding lignocellulosic bioconversion
Looking for Minor Phenolic Compounds in Extra Virgin Olive Oils Using Neutron and Raman Spectroscopies
Extra virgin olive oil (EVOO) is defined as a functional food as it contains numerous phenolic components with well-recognized health-beneficial properties, such as high antioxidant and anti-inflammatory capacity. These characteristics depend on their structural/conformational behavior, which is largely determined by intra- and intermolecular H-bond interactions. While the vibrational dynamics of isolated compounds have been studied in a number of recent investigations, their signal in a real-life sample of EVOO is overwhelmed by the major constituent acids. Here, we provide a full characterization of the vibrational spectroscopic signal from commercially available EVOO samples using Inelastic Neutron Scattering (INS) and Raman spectroscopies. The spectra are dominated by CH2 vibrations, especially at about 750 cm-1 and 1300 cm-1. By comparison with the spectra from hydroxytyrosol and other minor phenolic compounds, we show that the best regions in which to look for the structure-activity information related to the minor polar compounds is at 675 and 1200 cm-1 for hydroxytyrosol, and around 450 cm-1 for all minor polar compounds used as reference, especially if a selectively deuterated sample is available. The regional origin of the EVOO samples investigated appears to be related to the different amount of phenolic esters versus acids as reflected by the relative intensities of the peaks at 1655 and 1747 cm-1
- âŠ