35,678 research outputs found
X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: Application to (Gd,Nd)5Si4 compounds
Representative compounds of the new family of magnetic materials Gd5-xNdxSi4
were analyzed by X-ray diffraction at the XRD1 beamline at LNLS. To reduce
X-ray absorption, thin layers of the powder samples were mounted outside the
capillaries and measured in Debye-Scherrer geometry as usual. The X-ray
diffraction analyses and the magnetometry results indicate that the behavior of
the magnetic transition temperature as a function of Nd content may be directly
related to the average of the four smallest interatomic distances between
different rare earth sites of the majority phase of each compound. The quality
and consistency of the results show that the XRD1 beamline is able to perform
satisfactory X-ray diffraction experiments on high-absorption materials even
off the best conditions.Comment: 12 pages, 3 figures, 3 table
White dwarfs with a surface electrical charge distribution: Equilibrium and stability
The equilibrium configuration and the radial stability of white dwarfs
composed of charged perfect fluid are investigated. These cases are analyzed
through the results obtained from the solution of the hydrostatic equilibrium
equation. We regard that the fluid pressure and the fluid energy density follow
the relation of a fully degenerate electron gas. For the electric charge
distribution in the object, we consider that it is centralized only close to
the white dwarfs' surfaces. We obtain larger and more massive white dwarfs when
the total electric charge is increased. To appreciate the effects of the
electric charge in the structure of the star, we found that it must be in the
order of with which the electric field is about
. For white dwarfs with electric fields close to the
Schwinger limit, we obtain masses around . We also found that in
a system constituted by charged static equilibrium configurations, the maximum
mass point found on it marks the onset of the instability. This indicates that
the necessary and sufficient conditions to recognize regions constituted by
stable and unstable equilibrium configurations against small radial
perturbations are respectively and .Comment: This is a preprint. The original paper will be published in EPJ
Supergiant Barocaloric Effects in Acetoxy Silicone Rubber over a Wide Temperature Range: Great Potential for Solid-state Cooling
Solid-state cooling based on caloric effects is considered a viable
alternative to replace the conventional vapor-compression refrigeration
systems. Regarding barocaloric materials, recent results show that elastomers
are promising candidates for cooling applications around room-temperature. In
the present paper, we report supergiant barocaloric effects observed in acetoxy
silicone rubber - a very popular, low-cost and environmentally friendly
elastomer. Huge values of adiabatic temperature change and reversible
isothermal entropy change were obtained upon moderate applied pressures and
relatively low strains. These huge barocaloric changes are associated both to
the polymer chains rearrangements induced by confined compression and to the
first-order structural transition. The results are comparable to the best
barocaloric materials reported so far, opening encouraging prospects for the
application of elastomers in near future solid-state cooling devices.Comment: 19 pages, 7 figures, 2 table
Particle Learning for General Mixtures
This paper develops particle learning (PL) methods for the estimation of general mixture models. The approach is distinguished from alternative particle filtering methods in two major ways. First, each iteration begins by resampling particles according to posterior predictive probability, leading to a more efficient set for propagation. Second, each particle tracks only the "essential state vector" thus leading to reduced dimensional inference. In addition, we describe how the approach will apply to more general mixture models of current interest in the literature; it is hoped that this will inspire a greater number of researchers to adopt sequential Monte Carlo methods for fitting their sophisticated mixture based models. Finally, we show that PL leads to straight forward tools for marginal likelihood calculation and posterior cluster allocation.Business Administratio
A Tolman Surface Brightness Test for Universal Expansion, and the Evolution of Elliptical Galaxies in Distant Clusters
We use the intercept of the elliptical galaxy radius--surface brightness (SB)
relation at a fixed metric radius as the standard condition for the Tolman SB
test of the universal expansion. We use surface photometry in the optical and
near-IR of elliptical galaxies in Abell~2390 () and Abell~851
(), and compare them to the Coma cluster at . The
photometric data for each cluster are well-described by the Kormendy relation
, where in the optical and in the
near-IR. The scatter about this near-IR relation is only in
at the highest redshift, which is much smaller than at low redshifts,
suggesting a remarkable homogeneity of the cluster elliptical population at
. We use the intercept of these fixed-slope correlations at ~kpc (assuming ~km~s~Mpc, , and
, where the results are only weakly dependent on the cosmology) to
construct the Tolman SB test for these three clusters. The data are fully
consistent with universal expansion if we assume simple models of passive
evolution for elliptical galaxies, but are inconsistent with a non-expanding
geometry (the tired light cosmology) at the confidence level at
. These results suggest luminosity evolution in the restframe -band
of ~mag from to the present, and are consistent with
the ellipticals having formed at high redshift. The SB intercept in elliptical
galaxy correlations is thus a powerful tool for investigating models of their
evolution for significant lookback times.Comment: to appear in The Astrophysical Journal (Letters); 13 pages, including
3 Postscript figures and 1 table; uuencoded, compressed format; the paper is
also available in various formats from
http://astro.caltech.edu/~map/map.bibliography.refereed.htm
Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model
We study the thermal evolution of neutron stars containing deconfined quark
matter in their core. Such objects are generally referred to as quark-hybrid
stars. The confined hadronic matter in their core is described in the framework
of non-linear relativistic nuclear field theory. For the quark phase we use a
non-local extension of the SU(3) Nambu Jona-Lasinio model with vector
interactions. The Gibbs condition is used to model phase equilibrium between
confined hadronic matter and deconfined quark matter. Our study indicates that
high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid
matter in their cores. Neutron stars with canonical masses of around would not contain deconfined quark matter. The central proton
fractions of the stars are found to be high, enabling them to cool rapidly.
Very good agreement with the temperature evolution established for the neutron
star in Cassiopeia A (Cas A) is obtained for one of our models (based on the
popular NL3 nuclear parametrization), if the protons in the core of our stellar
models are strongly paired, the repulsion among the quarks is mildly repulsive,
and the mass of Cas A has a canonical value of .Comment: 10 pages, 7 figure
Improved semiclassical density matrix: taming caustics
We present a simple method to deal with caustics in the semiclassical
approximation to the thermal density matrix of a particle moving on the line.
For simplicity, only its diagonal elements are considered. The only ingredient
we require is the knowledge of the extrema of the Euclidean action. The
procedure makes use of complex trajectories, and is applied to the quartic
double-well potential.Comment: 20 pages, 7 figures. Revised version, accepted for publication in
Phys. Rev.
- …