247 research outputs found

    On the classical capacity of quantum Gaussian channels

    Full text link
    The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds can be efficiently calculated by restricting to Gaussian encodings, for which we provide analytical expressions.Comment: 10 pages, IOP style. v2: minor corrections, close to the published versio

    Impact of microRNAs in Resistance to Chemotherapy and Novel Targeted Agents in Non-Small Cell Lung Cancer

    Get PDF
    Despite recent advances in understanding the cancer signaling pathways and in developing new therapeutic strategies, non-small cell lung cancer (NSCLC) shows grim prognosis and high incidence of recurrence. Insufficient dis- ruption of oncogenic signaling and drug resistance are the most common causes of tumor recurrence. Drug resistance, in- trinsic or acquired, represents a main obstacle in NSCLC therapeutics by limiting the efficacy both of conventional che- motherapeutic compounds and new targeted agents. Therefore, novel and more innovative approaches are required for treatment of this tumor. MicroRNAs (miRNAs) are a family of small non-coding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing mRNA degradation or translational repression. Accumulating evidence suggests that impairment of candidate miRNAs may be involved in the acquisition of tumor cell resistance to conventional chemotherapy and novel biological agents by affecting the drug sensitivity of cancer cells. The modulation of these miR- NAs, using antagomiRs or miRNA mimics, can restore key gene networks and signaling pathways, and optimize anti- cancer therapies by inhibition of tumor cell proliferation and increasing the drug sensitivity. Therefore, miRNA-based therapeutics provides an attractive anti-tumor approach for developing new and more effective individualized therapeutic strategies, improving drug efficiency, and for predicting the response to different anticancer drugs. In this review, we pre- sent an overview on the role of miRNAs in resistance mechanisms of NSCLC, discussing the main studies on the aberra- tions in apoptosis, cell cycle and DNA damage repair pathways, as well as in novel drug targets

    Analysis of tissue and circulating microRNA expression during metaplastic transformation of the esophagus

    Get PDF
    Genetic changes involved in the metaplastic progression from squamous esophageal mucosa toward Barrett's metaplasia and adenocarcinoma are almost unknown. Several evidences suggest that some miRNAs are differentially expressed in Barrett's esophagus (BE) and esophageal adenocarcinoma. Among these, miR-143, miR-145, miR-194, miR-203, miR-205, miR-215 appear to have a key role in metaplasia and neoplastic progression. The aim of this study was to analyze deregulated miRNAs in serum and esophageal mucosal tissue biopsies to identify new biomarkers that could be associated with different stages of esophageal disease. Esophageal mucosal tissue biopsies and blood samples were collected and analyzed for BE diagnosis. Quantitative Real-time PCR was used to compare miRNA expression levels in serum and 60 disease/ normal-paired tissues from 30 patients diagnosed with esophagitis, columnar-lined oesophagus (CLO) or BE. MiRNA expression analysis showed that miR-143, miR-145, miR-194 and miR-215 levels were significantly higher, while miR-203 and miR-205 were lower in BE tissues compared with their corresponding normal tissues. Esophageal mucosa analysis of patients with CLO and esophagitis showed that these miRNAs were similarly deregulated but to a lesser extent keeping the same trend and CLO appeared as intermediate step between esophagitis and BE. Analysis on circulating miRNA levels confirmed that miR-194 and miR-215 were significantly upregulated in both BE and CLO compared to esophagitis, while miR-143 was significantly upregulated only in the Barrett group. These findings suggest that miRNAs may be involved in neoplastic/ metaplastic progression and miRNA analysis might be useful for progression risk prediction as well as for monitoring of BE/CLO patients

    Alzheimer's disease: new diagnostic and therapeutic tools

    Get PDF
    On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the lectures of M. Racchi on History and future perspectives of Alzheimer Biomarkers and of G. Scapagnini on Cellular Stress Response and Brain Ageing are summarized. Alzheimer's disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for clinica dementia. AD prevention is an important goal of ongoing research. Two objectives must be accomplished to make prevention feasible: i) individuals at high risk of AD need to be identified before the earliest symptoms become evident, by which time extensive neurodegeneration has already occurred and intervention to prevent the disease is likely to be less successful and ii) safe and effective interventions need to be developed that lead to a decrease in expression of this pathology. On the whole, data here reviewed strongly suggest that the measurement of conformationally altered p53 in blood cells has a high ability to discriminate AD cases from normal ageing, Parkinson's disease and other dementias. On the other hand, available data on the involvement of curcumin in restoring cellular homeostasis and rebalancing redox equilibrium, suggest that curcumin might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation, such as AD

    Quantum channels and memory effects

    Full text link
    Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.Comment: Review article, 61 pages, 26 figures; 400 references. Final version of the manuscript, typos correcte

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore