74 research outputs found

    The Future of Our Seas: Marine scientists and creative professionals collaborate for science communication

    Get PDF
    To increase awareness of the current challenges facing the marine environment, the Future of Our Seas (FOOS) project brought together the expertise of scientists, public engagement experts and creatives to train and support a group of marine scientists in effective science communication and innovative public engagement. This case study aims to inspire scientists and artists to use the FOOS approach in training, activity design and development support (hereafter called the ‘FOOS programme’) to collaboratively deliver novel and creative engagement activities. The authors reflect on the experiences of the marine scientists: (1) attending the FOOS communication and engagement training; (2) creating and delivering public engagement activities; (3) understanding our audience; and (4) collaborating with artists. The authors also share what the artists and audiences learned from participating in the FOOS public engagement activities. These different perspectives provide new insights for the field with respect to designing collaborative training which maximizes the impact of the training on participants, creative collaborators and the public. Long-term benefits of taking part in the FOOS programme, such as initiating future collaborative engagement activities and positively impacting the scientists’ research processes, are also highlighted

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Spatial representation for navigation in animats

    Get PDF
    This article considers the problem of spatial representation for animat navigation systems. It is proposed that the global navigation task, or "wayfinding, " is best supported by multiple interacting subsystems, each of which builds its own partial representation of relevant world knowledge. Evidence from the study of animal navigation is reviewed to demonstrate that similar principles underlie the wayfinding behavior of animals, including humans. A simulated wayfinding system is described that embodies and illustrates several of the themes identified with animat navigation. This system constructs a network of partial models of the quantitative spatial relations between groups of salient landmarks. Navigation tasks are solved by propagating egocentric view information through this network, using a simple but effective heuristic to arbitrate between multiple solutions

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Max Newman

    No full text

    (b) Future of the Clinic Service

    No full text
    • 

    corecore