208 research outputs found

    Short channel effects in graphene-based field effect transistors targeting radio-frequency applications

    Get PDF
    Channel length scaling in graphene field effect transistors (GFETs) is key in the pursuit of higher performance in radio frequency electronics for both rigid and flexible substrates. Although two-dimensional (2D) materials provide a superior immunity to Short Channel Effects (SCEs) than bulk materials, they could dominate in scaled GFETs. In this work, we have developed a model that calculates electron and hole transport along the graphene channel in a drift-diffusion basis, while considering the 2D electrostatics. Our model obtains the self-consistent solution of the 2D Poisson's equation coupled to the current continuity equation, the latter embedding an appropriate model for drift velocity saturation. We have studied the role played by the electrostatics and the velocity saturation in GFETs with short channel lengths L. Severe scaling results in a high degradation of GFET output conductance. The extrinsic cutoff frequency follows a 1/L^n scaling trend, where the index n fulfills n < 2. The case n = 2 corresponds to long-channel GFETs with low source/drain series resistance, that is, devices where the channel resistance is controlling the drain current. For high series resistance, n decreases down to n= 1, and it degrades to values of n < 1 because of the SCEs, especially at high drain bias. The model predicts high maximum oscillation frequencies above 1 THz for channel lengths below 100 nm, but, in order to obtain these frequencies, it is very important to minimize the gate series resistance. The model shows very good agreement with experimental current voltage curves obtained from short channel GFETs and also reproduces negative differential resistance, which is due to a reduction of diffusion current.Comment: 27-pages manuscript (10 figures) plus 6 pages of supplementary information. European Union Action H2020 (696656) / Department d'Universitats, Recerca i Societat de la Informaci\'o of the Generalitat de Catalunya (2014 SGR 384) / Ministerio de Econom\'ia y Competitividad of Spain (TEC2012-31330 and TEC2015-67462-C2-1-R) / MINECO FEDE

    Description of bulk inversion asymmetry in the effective-bond-orbital model

    Get PDF
    We have extended the effective-bond-orbital model (EBOM) method [Y. C. Chang, Phys. Rev. B 37, 8215 (1988)] to include the effects of the bulk inversion asymmetry (BIA) present in zinc blendes. This is accomplished without adding to the number of basis states or extending the range of interaction. We have also investigated a variant form of the EBOM proposed in the original formulation that offers improved zone-center behavior, but may also generate spurious solutions in heterostructure calculations due to poor description of bulk zone-boundary band structure. We offer suggestions for avoiding this problem so that this variant form of EBOM may be used safely. In general, we find that the addition of BIA effects in EBOM results in improved descriptions of zone-center band structure, but also in a loss of accuracy far from the Brillouin-zone center. We illustrate the use of the BIA extension with band-structure calculations for bulk GaSb. We show that the spin splitting predicted by the extended EBOM method for an AlSb/GaSb superlattice is in good agreement with k·p calculations that include BIA effects

    Thermal conductivity and phonon hydrodynamics in transition metal dichalcogenides from first-principles

    Full text link
    We carry out a systematic study of the thermal conductivity of four single-layer transition metal dichalcogenides, MX2_2 (M = Mo, W; X = S, Se) from first-principles by solving the Boltzmann Transport Equation (BTE). We compare three different theoretical frameworks to solve the BTE beyond the Relaxation Time Approximation (RTA), using the same set of interatomic force constants computed within density functional theory (DFT), finding that the RTA severely underpredicts the thermal conductivity of MS2_2 materials. Calculations of the different phonon scattering relaxation times of the main collision mechanisms and their corresponding mean free paths (MFP) allow evaluating the expected hydrodynamic behaviour in the heat transport of such monolayers. These calculations indicate that despite of their low thermal conductivity, the present TMDs can exhibit large hydrodynamic effects, being comparable to those of graphene, especially for WSe2_2 at high temperatures.Comment: 16 pages, 9 figure

    Numerical spurious solutions in the effective mass approximation

    Get PDF
    We have characterized a class of spurious solutions that appears when using the finite difference method to solve the effective mass approximation equations. We find that the behavior of these solutions as predicted by our model shows excellent agreement with numerical results. Using this interpretation we find a set of analytical expressions for conditions that the Luttinger parameters must satisfy to avoid spurious solutions. Finally, we use these conditions to check commonly used sets of parameters for their potential for generating this class of spurious solutions

    Disorder Enhanced Spin Polarization in Diluted Magnetic Semiconductors

    Full text link
    We present a theoretical study of diluted magnetic semiconductors that includes spin-orbit coupling within a realistic host band structure and treats explicitly the effects of disorder due to randomly substituted Mn ions. While spin-orbit coupling reduces the spin polarization by mixing different spin states in the valence bands, we find that disorder from Mn ions enhances the spin polarization due to formation of ferromagnetic impurity clusters and impurity bound states. The disorder leads to large effects on the hole carriers which form impurity bands as well as hybridizing with the valence band. For Mn doping 0.01 < x < 0.04, the system is metallic with a large effective mass and low mobility
    • …
    corecore