6,138 research outputs found

    A route to sub-diffraction-limited 
CARS Microscopy

    Get PDF
    We theoretically investigate a scheme to obtain sub-diffraction-limited resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. We find using density matrix calculations that the rise of vibrational (Raman) coherence can be strongly suppressed, and thereby the emission of CARS signals can be significantly reduced, when pre-populating the corresponding vibrational state through an incoherent process. The effectiveness of pre-populating the vibrational state of interest is investigated by considering the excitation of a neighbouring vibrational (control) state through an intense, mid-infrared control laser. We observe that, similar to the processes employed in stimulated emission depletion microscopy, the CARS signal exhibits saturation behaviour if the transition rate between the vibrational and the control state is large. Our approach opens up the possibility of achieving chemically selectivity sub-diffraction-limited spatially resolved imaging

    Spatially dependent Rabi oscillations: an approach to sub-diffraction-limited CARS microscopy

    Get PDF
    We present a theoretical investigation of coherent anti-Stokes Raman scattering (CARS) that is modulated by periodically depleting the ground state population through Rabi oscillations driven by an additional control laser. We find that such a process generates optical sidebands in the CARS spectrum and that the frequency of the sidebands depends on the intensity of the control laser light field. We show that analyzing the sideband frequency upon scanning the beams across the sample allows one to spatially resolve emitter positions where a spatial resolution of 65 nm, which is well below the diffraction-limit, can be obtained

    Preparation of ultracold atom clouds at the shot noise level

    Get PDF
    We prepare number stabilized ultracold clouds through the real-time analysis of non-destructive images and the application of feedback. In our experiments, the atom number N∼106{N\sim10^6} is determined by high precision Faraday imaging with uncertainty ΔN\Delta_N below the shot noise level, i.e., ΔN<N\Delta_N <\sqrt{N}. Based on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.Comment: Main text: 4 Figures, 4 pages. Supplemental Information: 4 figures, 5 page

    Spatially resolved observation of uniform precession modes in spin-valve systems

    Full text link
    Using time-resolved photoemission electron microscopy the excitation of uniform precession modes in individual domains of a weakly coupled spin-valve system has been studied. A coupling dependence of the precession frequencies has been found that can be reasonably well understood on the basis of a macrospin model. By tuning the frequency of the excitation source the uniform precession modes are excited in a resonant way.Comment: This article has been accepted by Journal of Applied Physics. After it is published, it will be found at http://jap.aip.or

    Spin dynamics in a two dimensional quantum gas

    Get PDF
    We have investigated spin dynamics in a 2D quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimposed angular density modulations. The density distributions depend on the applied magnetic field and are well explained by a simple Bogoliubov model. We show that the two clouds are anti-correlated in momentum space. The observed momentum correlations pave the way towards the creation of an atom source with non-local Einstein-Podolsky-Rosen entanglement.Comment: 5 pages, 4 figure

    A Formalism for Scattering of Complex Composite Structures. 2 Distributed Reference Points

    Get PDF
    Recently we developed a formalism for the scattering from linear and acyclic branched structures build of mutually non-interacting sub-units.{[}C. Svaneborg and J. S. Pedersen, J. Chem. Phys. 136, 104105 (2012){]} We assumed each sub-unit has reference points associated with it. These are well defined positions where sub-units can be linked together. In the present paper, we generalize the formalism to the case where each reference point can represent a distribution of potential link positions. We also present a generalized diagrammatic representation of the formalism. Scattering expressions required to model rods, polymers, loops, flat circular disks, rigid spheres and cylinders are derived. and we use them to illustrate the formalism by deriving the generic scattering expression for micelles and bottle brush structures and show how the scattering is affected by different choices of potential link positions.Comment: Paper no. 2 of a serie

    A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation

    Full text link
    We apply a replica inference based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent". Within our multiresolution approach, we compute information theory based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations as manifest in information theory overlaps. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed both at zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentation correspond to the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.Comment: 26 pages, 22 figure

    Gauge Theory for the Rate Equations: Electrodynamics on a Network

    Full text link
    Systems of coupled rate equations are ubiquitous in many areas of science, for example in the description of electronic transport through quantum dots and molecules. They can be understood as a continuity equation expressing the conservation of probability. It is shown that this conservation law can be implemented by constructing a gauge theory akin to classical electrodynamics on the network of possible states described by the rate equations. The properties of this gauge theory are analyzed. It turns out that the network is maximally connected with respect to the electromagnetic fields even if the allowed transitions form a sparse network. It is found that the numbers of degrees of freedom of the electric and magnetic fields are equal. The results shed light on the structure of classical abelian gauge theory beyond the particular motivation in terms of rate equations.Comment: 4 pages, 2 figures included, v2: minor revision, as publishe

    Memory effects in radiative jet energy loss

    Full text link
    In heavy-ion collisions the created quark-gluon plasma forms a quickly evolving background, leading to a time dependent radiative behavior of high momentum partons traversing the medium. We use the Schwinger Keldysh formalism to describe the jet evolution as a non-equilibrium process including the Landau-Pomeranschuk-Migdal effect. Concentrating on photon emission, a comparison of our results to a quasistatic calculation shows good agreement, leading to the conclusion that the radiative behavior follows the changes in the medium almost instantaneously

    Flow Field Evolution of a Decaying Sunspot

    Full text link
    We study the evolution of the flows and horizontal proper motions in and around a decaying follower sunspot based on time sequences of two-dimensional spectroscopic observations in the visible and white light imaging data obtained over six days from June~7 to~12, 2005. During this time period the sunspot decayed gradually to a pore. The spectroscopic observations were obtained with the Fabry-P\'{e}rot based Visible-Light Imaging Magnetograph (VIM) in conjunction with the high-order adaptive optics (AO) system operated at the 65 cm vacuum reflector of the Big Bear Solar Observatory (BBSO). We apply local correlation tracking (LCT) to the speckle reconstructed time sequences of white-light images around 600 nm to infer horizontal proper motions while the Doppler shifts of the scanned \FeI line at 630.15 nm are used to calculate line-of-sight (LOS) velocities with sub-arcsecond resolution. We find that the dividing line between radial inward and outward proper motions in the inner and outer penumbra, respectively, survives the decay phase. In particular the moat flow is still detectable after the penumbra disappeared. Based on our observations three major processes removed flux from the sunspot: (a) fragmentation of the umbra, (b) flux cancelation of moving magnetic features (MMFs; of the same polarity as the sunspot) that encounter the leading opposite polarity network and plages areas, and (c) flux transport by MMFs (of the same polarity as the sunspot) to the surrounding network and plage regions that have the same polarity as the sunspot.Comment: 9 pages, 7 figures, The Astrophysical Journal, accepted September, 200
    • …
    corecore