8,519 research outputs found

    Modulation of human corticospinal excitability by paired associative stimulation

    Get PDF
    Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation

    Upper Surface Nacelle Influence on SCAR Aerodynamic Characteristics at Transonic Speeds

    Get PDF
    The arrow-wing transport configuration with detached engines located over the wing to produce upper surface exhaust flow effects was tested at angles of attack from -4 deg to 8 deg and jet total-pressure ratios from 1 (Jet off) to approximately 10. Wing tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration only (no nacelles). Tests were made with various nacelle chordwise, spanwise, and vertical height locations over the Mach number, angle of attack, and jet total-pressure ratio ranges. Deflecting the wing tip leading edge flap from 0 deg to -10 deg increased maximum lift to drag ratio by 1.0 at subsonic speeds. Installation of upper surface nacelles (no wing/nacelle pylons) increased the wing-body pitching moment at all Mach numbers and decreased the drag of the wing-body configuration at subsonic Mach numbers. Jet exhaust interference effects were negligible

    Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    Get PDF
    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible

    Correlations, fluctuations and stability of a finite-size network of coupled oscillators

    Full text link
    The incoherent state of the Kuramoto model of coupled oscillators exhibits marginal modes in mean field theory. We demonstrate that corrections due to finite size effects render these modes stable in the subcritical case, i.e. when the population is not synchronous. This demonstration is facilitated by the construction of a non-equilibrium statistical field theoretic formulation of a generic model of coupled oscillators. This theory is consistent with previous results. In the all-to-all case, the fluctuations in this theory are due completely to finite size corrections, which can be calculated in an expansion in 1/N, where N is the number of oscillators. The N -> infinity limit of this theory is what is traditionally called mean field theory for the Kuramoto model.Comment: 25 pages (2 column), 12 figures, modifications for resubmissio

    A Distance-Limited Imaging Survey of Sub-Stellar Companions to Solar Neighborhood Stars

    Full text link
    We report techniques and results of a Palomar 200-inch (5 m) adaptive optics imaging survey of sub-stellar companions to solar-type stars. The survey consists of Ks coronagraphic observations of 21 FGK dwarfs out to 20 pc (median distance about 17 pc). At 1-arcsec separation (17 projected AU) from a typical target system, the survey achieves median sensitivities 7 mag fainter than the parent star. In terms of companion mass, that corresponds to sensitivities of 50MJ (1 Gyr), 70MJ (solar age), and 75MJ (10 Gyr), using the evolutionary models of Baraffe and colleagues. Using common proper motion to distinguish companions from field stars, we find that no system shows positive evidence of a previously unknown substellar companion (searchable separation about 20-250 projected AU at the median target distance).Comment: 29 pages, 5 figures. Carson et al. 2008, AJ, in pres

    Fuselage and nozzle pressure distributions of a 1/12-scale F-15 propulsion model at transonic speeds. Effect of fuselage modifications and nozzle variables

    Get PDF
    Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model was determined in the 16 foot transonic tunnel for Mach numbers from 0.60 to 1.20, angles of attack from -2 deg to 7 deg and ratio of jet total pressure to free stream static pressure from 1 up to about 7, depending on Mach number. The effects of nozzle geometry and horizontal tail deflection on the pressure distributions were investigated. Boundary layer total pressure profiles were determined at two locations ahead of the nozzles on the top nacelle surface. Reynolds number varied from about 1.0 x 10 to the 7th power per meter, depending on Mach number

    Sphaleron Effects Near the Critical Temperature

    Full text link
    We discuss one-loop radiative corrections to the sphaleron-induced baryon number-violating transition rate near the electroweak phase transition in the standard model. We emphasize that in the case of a first-order transition a rearrangement of the loop expansion is required close to the transition temperature. The corresponding expansion parameter, the effective 3-dimensional gauge coupling approaches a finite λ\lambda dependent value at the critical temperature. The λ\lambda (Higgs mass) dependence of the 1-loop radiative corrections is discussed in the framework of the heat kernel method. Radiative corrections are small compared to the leading sphaleron contribution as long as the Higgs mass is small compared to the W mass. To 1-loop accuracy, there is no Higgs mass range compatible with experimental limits where washing-out of a B+L asymmetry could be avoided for the minimal standard model with one Higgs doublet.Comment: 17 pages, RevTeX, (4 figures in a separate uuencoded file), HD-THEP-93-23re

    Ultrareliable, fault-tolerant control systems: A conceptual description

    Get PDF
    An Ultrareliable, Fault-Tolerant, Control-System (UFTCS) concept is described using a systems design philosophy which allows development of system structures containing virtually no common elements. Common elements limit achievable system reliability and can cause catastrophic loss of fault-tolerant system function. The UFTCS concept provides the means for removing common system elements by permitting the elements of the system to operate as independent, uncoupled entities. Multiple versions of the application program are run on dissimilar hardware. Fault tolerance is achieved through the use of static redundancy management

    Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions

    Full text link
    The large scale properties of spatiotemporal chaos in the 2d Kuramoto-Sivashinsky equation are studied using an explicit coarse graining scheme. A set of intermediate equations are obtained. They describe interactions between the small scale (e.g., cellular) structures and the hydrodynamic degrees of freedom. Possible forms of the effective large scale hydrodynamics are constructed and examined. Although a number of different universality classes are allowed by symmetry, numerical results support the simplest scenario, that being the KPZ universality class.Comment: 4 pages, 3 figure
    corecore