1,454 research outputs found
HypBO: Expert-Guided Chemist-in-the-Loop Bayesian Search for New Materials
Robotics and automation offer massive accelerations for solving intractable,
multivariate scientific problems such as materials discovery, but the available
search spaces can be dauntingly large. Bayesian optimization (BO) has emerged
as a popular sample-efficient optimization engine, thriving in tasks where no
analytic form of the target function/property is known. Here we exploit expert
human knowledge in the form of hypotheses to direct Bayesian searches more
quickly to promising regions of chemical space. Previous methods have used
underlying distributions derived from existing experimental measurements, which
is unfeasible for new, unexplored scientific tasks. Also, such distributions
cannot capture intricate hypotheses. Our proposed method, which we call HypBO,
uses expert human hypotheses to generate an improved seed of samples.
Unpromising seeds are automatically discounted, while promising seeds are used
to augment the surrogate model data, thus achieving better-informed sampling.
This process continues in a global versus local search fashion, organized in a
bilevel optimization framework. We validate the performance of our method on a
range of synthetic functions and demonstrate its practical utility on a real
chemical design task where the use of expert hypotheses accelerates the search
performance significantly
The Fractal Properties of the Source and BEC
Using simple space-time implementation of the random cascade model we
investigate numerically influence of the possible fractal structure of the
emitting source on Bose-Einstein correlations between identical particles. The
results are then discussed in terms of the non-extensive Tsallis statistics.Comment: LaTeX file and 2 PS files with figures, 8 pages altogether. Talk
presented at the 12th Indian Summer School "Relativistic Heavy Ion Physics,
Prague, Czech Republic, 30 August-3 Sept. 1999; to be published in Czech J.
Phys. (1999). Some typos correcte
Soft-core meson-baryon interactions. I. One-hadron-exchange potentials
The Nijmegen soft-core model for the pseudoscalar-meson baryon interaction is
derived, analogous to the Nijmegen NN and YN models. The interaction
Hamiltonians are defined and the resulting amplitudes for one-meson-exchange
and one-baryon-exchange in momentum space are given for the general mass case.
The partial wave projection is carried through and explicit expressions for the
momentum space partial wave meson-baryon potentials are presented.Comment: 25 pages, 2 PostScript figures, revtex4, submitted to Phys. Rev.
Hydrodynamic scaling from the dynamics of relativistic quantum field theory
Hydrodynamic behavior is a general feature of interacting systems with many
degrees of freedom constrained by conservation laws. To date hydrodynamic
scaling in relativistic quantum systems has been observed in many high energy
settings, from cosmic ray detections to accelerators, with large particle
multiplicity final states. Here we show first evidence for the emergence of
hydrodynamic scaling in the dynamics of a relativistic quantum field theory. We
consider a simple scalar model in 1+1 dimensions in the
Hartree approximation and study the dynamics of two colliding kinks at
relativistic speeds as well as the decay of a localized high energy density
region. The evolution of the energy-momentum tensor determines the dynamical
local equation of state and allows the measurement of the speed of sound.
Hydrodynamic scaling emerges at high local energy densities.Comment: 4 pages, 4 color eps figures, uses RevTex, v2 some typos corrected
and references adde
Higher Resonance Contributions to the Adler-Weisberger Sum Rule in the Large N_c Limit
We determine the --dependence of the resonance contributions to the
Adler--Weisberger sum rule for the inverse square of the axial charge
coupling constant and show that in the large limit the contributions of
the Roper-like excitations scale as . Consistency with the
scaling of the term in the sum rule requires these contributions to
cancel against each other.Comment: 10 pages, LaTeX, TH Darmstadt preprint IKDA 93/47, REVISE
Early neurophysiological stimulus processing during a performance-monitoring task differentiates women with bipolar disorder from women with ADHD
Adults with attention-deficit/hyperactivity disorder (ADHD) or bipolar disorder (BD) may display similar cognitive impairments and clinical symptoms, which might reflect shared mechanisms. Initial evidence indicates disorder-specific and overlapping neurophysiological alterations using event-related potentials (ERPs) in individuals with BD or ADHD during attentional tasks, but it is unknown whether impairments generalize across other processes and tasks. We conduct the first comparison between women with ADHD (n = 20), women with BD (n = 20) and control women (n = 20) on ERPs from a performance-monitoring flanker task. The BD group showed a significantly attenuated frontal ERP of conflict monitoring (N2) compared to the ADHD group across both low-conflict (congruent) and high-conflict (incongruent) task conditions, and compared to controls in the high-conflict condition. However, when controlling for an earlier attentional ERP (frontal N1), which was significantly reduced in participants with BD compared to participants with ADHD and controls, N2 group differences were no longer significant. These results indicate that ERP differences in conflict monitoring may be attributable to differences in earlier attentional processes. These findings identify neural differences in early attention between BD and ADHD which precede conflict monitoring processes, potentially pointing to distinct neural mechanisms implicated in the two disorders
Multiplicity Distributions and Rapidity Gaps
I examine the phenomenology of particle multiplicity distributions, with
special emphasis on the low multiplicities that are a background in the study
of rapidity gaps. In particular, I analyze the multiplicity distribution in a
rapidity interval between two jets, using the HERWIG QCD simulation with some
necessary modifications. The distribution is not of the negative binomial form,
and displays an anomalous enhancement at zero multiplicity. Some useful
mathematical tools for working with multiplicity distributions are presented.
It is demonstrated that ignoring particles with pt<0.2 has theoretical
advantages, in addition to being convenient experimentally.Comment: 24 pages, LaTeX, MSUHEP/94071
Bounds for Bose-Einstein Correlation Functions
Bounds for the correlation functions of identical bosons are discussed for
the general case of a Gaussian density matrix. In particular, for a purely
chaotic system the two-particle correlation function must always be greater
than one. On the other hand, in the presence of a coherent component the
correlation function may take values below unity. The experimental situation is
briefly discussed.Comment: 7 pages, LaTeX, DMR-THEP-93-5/
Random and Correlated Phases of Primordial Gravitaional Waves
The phases of primordial gravity waves is analysed in detail within a quantum
mechanical context following the formalism developed by Grishchuk and Sidorov.
It is found that for physically relevant wavelengths both the phase of each
individual mode and the phase {\it difference} between modes are randomly
distributed. The phase {\it sum} between modes with oppositely directed
wave-vectors, however, is not random and takes on a definite value with no rms
fluctuation. The conventional point of view that primordial gravity waves
appear after inflation as a classical, random stochastic background is also
addressed.Comment: 14 pages, written in REVTE
- …