5,260 research outputs found
Rippled Cosmological Dark Matter from Damped Oscillating Newton Constant
Let the reciprocal Newton 'constant' be an apparently non-dynamical
Brans-Dicke scalar field damped oscillating towards its General Relativistic
VEV. We show, without introducing additional matter fields or dust, that the
corresponding cosmological evolution averagely resembles, in the Jordan frame,
the familiar dark radiation -> dark matter -> dark energy domination sequence.
The fingerprints of our theory are fine ripples, hopefully testable, in the FRW
scale factor; they die away at the General Relativity limit. The possibility
that the Brans-Dicke scalar also serves as the inflaton is favorably examined.Comment: RevTex4, 12 pages, 5 figures; Minor revision, References adde
Matter loops corrected modified gravity in Palatini formulation
Recently, corrections to the standard Einstein-Hilbert action are proposed to
explain the current cosmic acceleration in stead of introducing dark energy. In
the Palatini formulation of those modified gravity models, there is an
important observation due to Arkani-Hamed: matter loops will give rise to a
correction to the modified gravity action proportional to the Ricci scalar of
the metric. In the presence of such term, we show that the current forms of
modified gravity models in Palatini formulation, specifically, the 1/R gravity
and gravity, will have phantoms. Then we study the possible
instabilities due to the presence of phantom fields. We show that the strong
instability in the metric formulation of 1/R gravity indicated by Dolgov and
Kawasaki will not appear and the decay timescales for the phantom fields may be
long enough for the theories to make sense as effective field theory . On the
other hand, if we change the sign of the modification terms to eliminate the
phantoms, some other inconsistencies will arise for the various versions of the
modified gravity models. Finally, we comment on the universal property of the
Palatini formulation of the matter loops corrected modified gravity models and
its implications.Comment: 11 pages, 1 figures, References adde
Astrophysical Probes of Fundamental Physics
I review the theoretical motivation for varying fundamental couplings and
discuss how these measurements can be used to constrain a number of fundamental
physics scenarios that would otherwise be inacessible to experiment. As a case
study I will focus on the relation between varying couplings and dark energy,
and explain how varying coupling measurements can be used to probe the nature
of dark energy, with important advantages over the standard methods. Assuming
that the current observational evidence for varying and is
correct, a several-sigma detection of dynamical dark energy is feasible within
a few years, using currently operational ground-based facilities. With
forthcoming instruments like CODEX, a high-accuracy reconstruction of the
equation of state may be possible all the way up to redshift .Comment: Invited Review talk at the ESO Precision Spectroscopy in Astrophysics
conference, to appear in the proceeding
Photon-axion mixing and ultra-high-energy cosmic rays from BL Lac type objects -- Shining light through the Universe
Photons may convert into axion like particles and back in the magnetic field
of various astrophysical objects, including active galaxies, clusters of
galaxies, intergalactic space and the Milky Way. This is a potential
explanation for the candidate neutral ultra-high-energy (E>10^18 eV) particles
from distant BL Lac type objects which have been observed by the High
Resolution Fly's Eye experiment. Axions of the same mass and coupling may
explain also TeV photons detected from distant blazars.Comment: Revtex 10 pages, 6 figures. V.2: QED dispersion effects taken into
account; principal results unchanged. V3: misprints and sqrt(4*pi) factors in
Gauss to eV conversion corrected; conclusions unchange
Out of equilibrium: understanding cosmological evolution to lower-entropy states
Despite the importance of the Second Law of Thermodynamics, it is not
absolute. Statistical mechanics implies that, given sufficient time, systems
near equilibrium will spontaneously fluctuate into lower-entropy states,
locally reversing the thermodynamic arrow of time. We study the time
development of such fluctuations, especially the very large fluctuations
relevant to cosmology. Under fairly general assumptions, the most likely
history of a fluctuation out of equilibrium is simply the CPT conjugate of the
most likely way a system relaxes back to equilibrium. We use this idea to
elucidate the spacetime structure of various fluctuations in (stable and
metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure
Single ion implantation for single donor devices using Geiger mode detectors
Electronic devices that are designed to use the properties of single atoms
such as donors or defects have become a reality with recent demonstrations of
donor spectroscopy, single photon emission sources, and magnetic imaging using
defect centers in diamond. Improving single ion detector sensitivity is linked
to improving control over the straggle of the ion as well as providing more
flexibility in lay-out integration with the active region of the single donor
device construction zone by allowing ion sensing at potentially greater
distances. Using a remotely located passively gated single ion Geiger mode
avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency
at a distance of >75 um from the center of the collecting junction. This
detection efficiency is achieved with sensitivity to ~600 or fewer
electron-hole pairs produced by the implanted ion. Ion detectors with this
sensitivity and integrated with a thin dielectric, for example 5 nm gate oxide,
using low energy Sb implantation would have an end of range straggle of <2.5
nm. Significant reduction in false count probability is achieved by modifying
the ion beam set-up to allow for cryogenic operation of the SIGMA detector.
Using a detection window of 230 ns at 1 Hz, the probability of a false count
was measured as 1E-1 and 1E-4 for operation temperatures of 300K and 77K,
respectively. Low temperature operation and reduced false, dark, counts are
critical to achieving high confidence in single ion arrival. For the device
performance in this work, the confidence is calculated as a probability of >98%
for counting one and only one ion for a false count probability of 1E-4 at an
average ion number per gated window of 0.015.Comment: 10 pages, 5 figures, submitted to Nanotechnolog
Calibration of oxygen 1s ionization energies. Accurate energies for CO2, H2O, CO, and O2
Access to accurate reference data is a prerequisite in order to translate chemical shifts to an absolute scale for inner-shell ionization energies. Calibration standards for oxygen 1s (O 1s) ionization energies are less well established than, for instance, for carbon 1s. To improve upon this situation, adiabatic and vertical O 1s ionization energies for gaseous carbon dioxide (CO2) are critically reviewed and used to establish the most accurate values currently available: 541.085(17) and 541.253(17) eV, respectively. Combining these with new precise measurements of shifts in O 1s ionization energies for H2O, CO, and O2 allows us to establish equally accurate absolute ionization energies for these molecules as for CO2. The resulting adiabatic and vertical energies are 539.728(17) and 539.827(17) eV for H2O, 542.439(17) and 542.495(17) eV for CO, 543.285(17) and 543.294(17) eV for O2 (4Σ final state), and 544.338(17) and 544.423(17) eV for O2 (2Σ final state). It is proposed that O 1s in CO2 be adopted as a standard of higher precedence, and that H2O, CO, and O2 be used also. The O 1s ionization energies in these molecules occur in the range 540–543 eV. These proposed standards should provide optimal internal calibration for a wide range of oxygen-containing compounds.publishedVersio
The nearly Newtonian regime in Non-Linear Theories of Gravity
The present paper reconsiders the Newtonian limit of models of modified
gravity including higher order terms in the scalar curvature in the
gravitational action. This was studied using the Palatini variational principle
in [Meng X. and Wang P.: Gen. Rel. Grav. {\bf 36}, 1947 (2004)] and
[Dom\'inguez A. E. and Barraco D. E.: Phys. Rev. D {\bf 70}, 043505 (2004)]
with contradicting results. Here a different approach is used, and problems in
the previous attempts are pointed out. It is shown that models with negative
powers of the scalar curvature, like the ones used to explain the present
accelerated expansion, as well as their generalization which include positive
powers, can give the correct Newtonian limit, as long as the coefficients of
these powers are reasonably small. Some consequences of the performed analysis
seem to raise doubts for the way the Newtonian limit was derived in the purely
metric approach of fourth order gravity [Dick R.: Gen. Rel. Grav. {\bf 36}, 217
(2004)]. Finally, we comment on a recent paper [Olmo G. J.: Phys. Rev. D {\bf
72}, 083505 (2005)] in which the problem of the Newtonian limit of both the
purely metric and the Palatini formalism is discussed, using the equivalent
Brans--Dicke theory, and with which our results partly disagree.Comment: typos corrected, replaced to match published versio
Palatini formulation of the modified gravity with an additionally squared scalar curvature term
In this paper by deriving the Modified Friedmann equation in the Palatini
formulation of gravity, first we discuss the problem of whether in
Palatini formulation an additional term in Einstein's General Relativity
action can drive an inflation. We show that the Palatini formulation of
gravity cannot lead to the gravity-driven inflation as in the metric formalism.
If considering no zero radiation and matter energy densities, we obtain that
only under rather restrictive assumption about the radiation and matter energy
densities there will be a mild power-law inflation , which is
obviously different from the original vacuum energy-like driven inflation. Then
we demonstrate that in the Palatini formulation of a more generally modified
gravity, i.e., the model that intends to explain both the current
cosmic acceleration and early time inflation, accelerating cosmic expansion
achieved at late Universe evolution times under the model parameters satisfying
.Comment: 14 pages, accepted for publication by CQ
- …