20,720 research outputs found

    Tripropellant combustion process

    Get PDF
    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented

    The evolution of organizational niches : U.S. automobile manufacturers, 1885-1981.

    Get PDF
    Although the niche figures prominently in contemporary theories of organization, analysts often fail to tie micro processes within the niche to long-term changes in the broader environment. In this paper, we advance arguments about the relationship between an organization's niche and evolution in the structure of its organizational population over time. We focus on the technological niche and processes of positioning and crowding among firms in the niche space, relating them to the level of concentration among all firms in the market. Building on previous empirical studies in organizational ecology, we study the evolution of concentration in the American automobile industry from 1885 to 1981 and estimate models of the hazard of exit of individual producers from the market. The findings show that niche and concentration interact in complex ways, yielding a more unified depiction of organizational evolution than typically described or reported

    Two Component Model of Dark Energy

    Full text link
    We consider the possibility that the dark energy is made up of two or more independent components, each having a different equation of state. We fit the model with supernova and gamma-ray burst (GRB) data from resent observations, and use the Markov Chain Monte Carlo (MCMC) technique to estimate the allowed parameter regions. We also use various model selection criteria to compare the two component model with the LCDM, one component dark energy model with static or variable w(XCDM), and with other multi-component models. We find that the two component models can give reasonably good fit to the current data. For some data sets, and depending somewhat on the model selection criteria, the two component model can give better fit to the data than XCDM with static w and XCDM with variable w parameterized by w = w_0 + w_az/(1+z).Comment: 10 pages, 8 figures, 3 tables; Version accepted by PR

    On the Ricci flow and emergent quantum mechanics

    Full text link
    The Ricci flow equation of a conformally flat Riemannian metric on a closed 2-dimensional configuration space is analysed. It turns out to be equivalent to the classical Hamilton-Jacobi equation for a point particle subject to a potential function that is proportional to the Ricci scalar curvature of configuration space. This allows one to obtain Schroedinger quantum mechanics from Perelman's action functional: the quantum-mechanical wavefunction is the exponential of ii times the conformal factor of the metric on configuration space. We explore links with the recently discussed emergent quantum mechanics.Comment: To appear in the proceedings of DICE'08 (Castiglioncello, Italy, Sept. 2008), edited by H.-T. Elz

    Welcher Weg? A trajectory representation of a quantum Young's diffraction experiment

    Get PDF
    The double slit problem is idealized by simplifying each slit by a point source. A composite reduced action for the two correlated point sources is developed. Contours of the reduced action, trajectories and loci of transit times are developed in the region near the two point sources. The trajectory through any point in Euclidian 3-space also passes simultaneously through both point sources.Comment: 12 pages LaTeX2e, 9 figures. Typos corrected. Author's final submission. A companion paper to "Interference, reduced action, and trajectories", quant-ph/0605120. Keywords: interference, Young's experiment, entanglement, nonlocality, trajectory representation, determinis

    Carbon and nitrogen dynamics: Greenhouse gases in groundwater beneath a constructed wetland treating municipal wastewater

    Get PDF
    Conference oral presentationConstructed wetlands (CW) act as nitrogen (N) sinks and reactors facilitating a number of physical, chemical and biological processes. The N removal efficiency of through-flowing water in such systems when used to treat municipal wastewater is variable. Their overall removal efficiencies do not specifically explain which N species have been removed by physical attenuation, and by biological assimilation or transformation to other forms. A wider understanding of how N removal occurs would help elucidate how losses of N and associated gases from CW impact on water and air quality. The objective of this study is to investigate the C and N cycling processes in the porewater of soils immediately adjacent, up-gradient and down- gradient to helophyte —vegetated CW cells

    Voids as a Precision Probe of Dark Energy

    Full text link
    A signature of the dark energy equation of state may be observed in the shape of voids. We estimate the constraints on cosmological parameters that would be determined from the ellipticity distribution of voids from future spectroscopic surveys already planned for the study of large scale structure. The constraints stem from the sensitivity of the distribution of ellipticity to the cosmological parameters through the variance of fluctuations of the density field smoothed at some length scale. This length scale can be chosen to be of the order of the comoving radii of voids at very early times when the fluctuations are Gaussian distributed. We use Fisher estimates to show that the constraints from void ellipticities are promising. Combining these constraints with other traditional methods results in the improvement of the Dark Energy Task Force Figure of Merit on the dark energy parameters by an order of hundred for future experiments. The estimates of these future constraints depend on a number of systematic issues which require further study using simulations. We outline these issues and study the impact of certain observational and theoretical systematics on the forecasted constraints on dark energy parameters.Comment: Submitted to PRD, 22 pages 9 figure

    Gott time machines in the Anti-de Sitter space

    Full text link
    In 1991 Gott presented a solution of Einstein's field equations in 2+1 dimensions with Λ=0\Lambda = 0 that contained closed timelike curves (CTC's). This solution was remarkable because at first it did not seem to be unphysical in any other respect. Later, however, it was shown that Gott's solution is tachyonic in a certain sense. Here the case Λ<0\Lambda < 0 is discussed. We show that it is possible to construct CTC's also in this case, in a way analogous to that used by Gott. We also show that this construction still is tachyonic. Λ<0\Lambda < 0 means that we are dealing with Anti-de Sitter space, and since the CTC-construction necessitates some understanding of its structure, a few pages are devoted to this subject.Comment: 11 page

    Transition from quintessence to phantom phase in quintom model

    Get PDF
    Assuming the Hubble parameter is a continuous and differentiable function of comoving time, we investigate necessary conditions for quintessence to phantom phase transition in quintom model. For power-law and exponential potential examples, we study the behavior of dynamical dark energy fields and Hubble parameter near the transition time, and show that the phantom-divide-line w=-1 is crossed in these models.Comment: LaTeX, 19 pages, four figures, some minor changes in Introduction, two figures added and the references updated, accepted for publication in Phys. Rev.
    • …
    corecore