1,032 research outputs found
Substance P regulates puberty onset and fertility in the female mouse
Puberty is a tightly regulated process that leads to reproductive capacity. Kiss1 neurons are crucial in this process by stimulating GnRH, yet how Kiss1 neurons are regulated remains unknown. Substance P (SP), an important neuropeptide in pain perception, induces gonadotropin release in adult mice in a kisspeptin-dependent manner. Here, we assessed whether SP, through binding to its receptor NK1R (neurokinin 1 receptor), participates in the timing of puberty onset and fertility in the mouse. We observed that 1) selective NK1R agonists induce gonadotropin release in prepubertal females; 2) the expression of Tac1 (encoding SP) and Tacr1 (NK1R) in the arcuate nucleus is maximal before puberty, suggesting increased SP tone; 3) repeated exposure to NK1R agonists prepubertally advances puberty onset; and 4) female Tac1-/- mice display delayed puberty; moreover, 5) SP deficiency leads to subfertility in females, showing fewer corpora lutea and antral follicles and leading to decreased litter size. Thus, our findings support a role for SP in the stimulation of gonadotropins before puberty, acting via Kiss1 neurons to stimulate GnRH release, and its involvement in the attainment of full reproductive capabilities in female mice. Copyright © 2015 by the Endocrine Society
Group Average Representations in Euclidean Distance Cones
The set of Euclidean distance matrices has a well-known representation as a convex cone. The problems of representing the group averages of K distance matrices are discussed, but not fully resolved, in the context of SMACOF, Generalized Orthogonal Procrustes Analysis and Individual Differences Scaling. The polar (or dual) cone representation, corresponding to inner-products around a centroid, is also discussed. Some new characterisations of distance cones in terms of circumhyperspheres are presented
Effect of maternal restraint stress during gestation on temporal lipopolysaccharide-induced neuroendocrine and immune responses of progeny
The impact of gestational dam restraint stress on progeny immune and neuroendocrine temporal hormone responses to lipopolysaccharide (LPS) challenge was assessed. Maternal stress (5-min snout snare restraint stress during days 84 to 112 of gestation) increased (P \u3c 0.05) the magnitude of tumor necrosis factor (TNF)-α, interleukin-6, epinephrine (E), norepinephrine, and serum amyloid A (SAA) production following LPS infusion in the offspring. Moreover, these effects appear to be dependent on gender for TNF-α, E, and cortisol production. However, maternal stress did not affect (P \u3c 0.05) the normalization of proinflammatory cytokines or neuroendocrine hormones produced following LPS. Collectively, these results indicate that maternal stress impacts aspects of the proinflammatory cytokine and stress hormone response in their progeny following LPS dosing of the offspring. This response is potentially responsible in part for the resultant changes to SAA production. Because several of the changes observed here are dependent on pig gender, these results are also the first evidence that inherent epigenetic factors coupled with maternal stress impact the cumulative response to stress and LPS in young pigs
Wave propagation in axion electrodynamics
In this paper, the axion contribution to the electromagnetic wave propagation
is studied. First we show how the axion electrodynamics model can be embedded
into a premetric formalism of Maxwell electrodynamics. In this formalism, the
axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but
emerges in a natural way as an irreducible part of a general constitutive
tensor.We show that in order to represent the axion contribution to the wave
propagation it is necessary to go beyond the geometric approximation, which is
usually used in the premetric formalism. We derive a covariant dispersion
relation for the axion modified electrodynamics. The wave propagation in this
model is studied for an axion field with timelike, spacelike and null
derivative covectors. The birefringence effect emerges in all these classes as
a signal of Lorentz violation. This effect is however completely different from
the ordinary birefringence appearing in classical optics and in premetric
electrodynamics. The axion field does not simple double the ordinary light cone
structure. In fact, it modifies the global topological structure of light cones
surfaces. In CFJ-electrodynamics, such a modification results in violation of
causality. In addition, the optical metrics in axion electrodynamics are not
pseudo-Riemannian. In fact, for all types of the axion field, they are even
non-Finslerian
Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with Beams of High Intensity and Large Brilliance
We study the production of radioisotopes for nuclear medicine in
photonuclear reactions or ()
photoexcitation reactions with high flux [()/s], small
diameter m and small band width () beams produced by Compton back-scattering of laser
light from relativistic brilliant electron beams. We compare them to (ion,np) reactions with (ion=p,d,) from particle accelerators like
cyclotrons and (n,) or (n,f) reactions from nuclear reactors. For
photonuclear reactions with a narrow beam the energy deposition in the
target can be managed by using a stack of thin target foils or wires, hence
avoiding direct stopping of the Compton and pair electrons (positrons).
isomer production via specially selected cascades
allows to produce high specific activity in multiple excitations, where no
back-pumping of the isomer to the ground state occurs. We discuss in detail
many specific radioisotopes for diagnostics and therapy applications.
Photonuclear reactions with beams allow to produce certain
radioisotopes, e.g. Sc, Ti, Cu, Pd, Sn,
Er, Pt or Ac, with higher specific activity and/or
more economically than with classical methods. This will open the way for
completely new clinical applications of radioisotopes. For example Pt
could be used to verify the patient's response to chemotherapy with platinum
compounds before a complete treatment is performed. Also innovative isotopes
like Sc, Cu and Ac could be produced for the first time
in sufficient quantities for large-scale application in targeted radionuclide
therapy.Comment: submitted to Appl. Phys.
Early medieval place-names and riverine flood histories: a new approach and new chronostratigraphic records for three English rivers
Environmental information from place-names has largely been overlooked by geoarchaeologists and fluvial geomorphologists in analyses of the depositional histories of rivers and floodplains. Here, new flood chronologies for the rivers Teme, Severn, and Wye are presented, modelled from stable river sections excavated at Broadwas, Buildwas, and Rotherwas. These are connected by the Old English term *wĂŠsse, interpreted as âland by a meandering river which floods and drains quicklyâ. The results reveal that, in all three places, flooding during the early medieval period occurred more frequently between AD 350â700 than between AD 700â1100, but that over time each river's flooding regime became more complex including high magnitude single events. In the sampled locations, the fluvial dynamics of localized flood events had much in common, and almost certainly differed in nature from other sections of their rivers, refining our understanding of the precise nature of flooding which their names sought to communicate. This study shows how the toponymic record can be helpful in the long-term reconstruction of historic river activity and for our understanding of past human perceptions of riverine environments
Sub-millimeter Tests of the Gravitational Inverse-square Law
Motivated by a variety of theories that predict new effects, we tested the
gravitational 1/r^2 law at separations between 10.77 mm and 137 microns using
two different 10-fold azimuthally symmetric torsion pendulums and rotating
10-fold symmetric attractors. Our work improves upon other experiments by up to
a factor of about 100. We found no deviation from Newtonian physics at the 95%
confidence level and interpret these results as constraints on extensions of
the Standard Model that predict Yukawa or power-law forces. We set a constraint
on the largest single extra dimension (assuming toroidal compactification and
that one extra dimension is significantly larger than all the others) of R <=
160 microns, and on two equal-sized large extra dimensions of R <= 130 microns.
Yukawa interactions with |alpha| >= 1 are ruled out at 95% confidence for
lambda >= 197 microns. Extra-dimensions scenarios stabilized by radions are
restricted to unification masses M >= 3.0 TeV/c^2, regardless of the number of
large extra dimensions. We also provide new constraints on power-law potentials
V(r)\propto r^{-k} with k between 2 and 5 and on the gamma_5 couplings of
pseudoscalars with m <= 10 meV/c^2.Comment: 34 pages, 38 figure
VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager
In this paper we describe in detail the implementation and main properties of
a new inversion code for the polarized radiative transfer equation (VFISV: Very
Fast inversion of the Stokes vector). VFISV will routinely analyze pipeline
data from the Helioseismic and Magnetic Imager (HMI) on-board of the Solar
Dynamics Observatory (SDO). It will provide full-disk maps (40964096
pixels) of the magnetic field vector on the Solar Photosphere every 10 minutes.
For this reason VFISV is optimized to achieve an inversion speed that will
allow it to invert 16 million pixels every 10 minutes with a modest number
(approx. 50) of CPUs. Here we focus on describing a number of important
details, simplifications and tweaks that have allowed us to significantly speed
up the inversion process. We also give details on tests performed with data
from the spectropolarimeter on-board of the Hinode spacecraft.Comment: 23 pages, 9 figures (2 color). Submitted for publication to Solar
Physic
Dark energy and dark matter from an inhomogeneous dilaton
A cosmological scenario is proposed where the dark matter (DM) and dark
energy (DE) of the universe are two simultaneous manifestations of an
inhomogenous dilaton. The equation of state of the field is scale-dependent and
pressureless at galactic and larger scales and it has negative pressure as a DE
at very large scales. The dilaton drives an inflationary phase followed by a
kinetic energy-dominated one, as in the "quintessential inflation" model
introduced by Peebles & Vilenkin, and soon after the end of inflation particle
production seeds the first inhomogeneities that lead to galaxy formation. The
dilaton is trapped near the minimum of the potential where it oscillates like a
massive field, and the excess of kinetic energy is dissipated via the mechanism
of "gravitational cooling" first introduced by Seidel & Suen. The
inhomogeneities therefore behave like solitonic oscillations around the minimum
of the potential, known as "oscillatons", that we propose account for most DM
in galaxies. Those regions where the dilaton does not transform enough kinetic
energy into reheating or carry an excess of it from regions that have cooled,
evolve to the tail of the potential as DE, driving the acceleration of the
universe.Comment: 9 pages, 8 figures, uses revtex, submitted PR
Bulk viscosity driving the acceleration of the Universe
The possibility that the present acceleration of the universe is driven by a
kind of viscous fluid is exploited. At background level this model is similar
to the generalized Chaplygin gas model (GCGM). But, at perturbative level, the
viscous fluid exhibits interesting properties. In particular the oscillations
in the power spectrum that plagues the GCGM are not present. Possible
fundamental descriptions for this viscous dark energy are discussed.Comment: Latex file, 8 pages, 3 eps figure
- âŠ