3,120 research outputs found
The development of a new sport-specific classification of coping and a meta-analysis of the relationship between different coping strategies and moderators on sporting outcomes
There is an ever growing coping and sports performance literature, with researchers using many different methods to assess performance and different classifications of coping. As such, it makes it difficult to compare studies and therefore identify how coping is related to performance. Furthermore, there are no quantitative syntheses of the results from these studies. A quantitative synthesis would facilitate a more comprehensive understanding of how coping is associated with athletic performance. In order to accurately compare studies, our first aim was to develop a new coping classification that would make this possible. Firstly, we reviewed the strengths and limitations of the different coping classifications and then identified the commonalities and differences between such classifications. We opted for a three-factor classification of coping, because the evidence suggests that a three-factor classification provides a superior model fit to two-factor approaches. Our new classification of coping was based on an existing model from the developmental literature, which received an excellent model fit. We made some adaptations, however, as our classification was intended for an athletic population. As such, we classified coping as mastery (i.e., controlling the situation and eliminating the stressor), internal regulation (i.e., managing internal stress responses), or goal withdrawal (i.e., ceasing efforts towards goal attainment). Undertaking a meta-analysis, our second aim was to identify which coping strategies correlated with sports performance and whether this relationship varied according to moderator variables. Articles were sourced from online electronic databases and manual journal searches. PRISMA guidelines were used to search, select, and synthesize relevant studies. Random effects meta-analyses were performed to identify associations between coping classification and sport performance. Q, I2, and R2 values assessed heterogeneity. Eighteen published investigations, including 3900 participants and incorporating fifty-nine correlations, indicated an overall positive effect for mastery coping, a negligible negative effect for internal regulation coping, and a negative effect for goal withdrawal strategies. The findings of this meta-analysis could be used by sports practitioners to help them deliver effective coping interventions. In order to maximize performance, practitioners could encourage the use of mastery coping, but advise their athletes not to use goal withdrawal strategies
Dimensional Reduction of the Abelian-Higgs Carroll-Field-Jackiw Model
Taking as a starting point a Lorentz non-invariant Abelian-Higgs model
defined in 1+3 dimensions, we carry out its dimensional reduction to D=1+2,
obtaining a new planar model composed by a Maxwell-Chern-Simons-Proca gauge
sector, a massive scalar sector, and a mixing term (involving the fixed
background (v^{\mu}) that imposes the Lorentz violation to the reduced model.
The propagators of the scalar and massive gauge field are evaluated and the
corresponding dispersion relations determined. Based on the poles of the
propagators, a causality and unitarity analysis is carried out at tree-level.
One then shows that the model is totally causal and unitary.Comment: 10 pages, style revtex, revised version to appear in Eur. Phys. J.
C(2004
Isotropically Driven versus Outflow Driven Turbulence: Observational Consequences for Molecular Clouds
Feedback from protostellar outflows can influence the nature of turbulence in
star forming regions even if they are not the primary source of velocity
dispersion for all scales of molecular clouds. For the rate and power expected
in star forming regions, we previously (Carroll et al. 2009) demonstrated that
outflows could drive supersonic turbulence at levels consistent with the
scaling relations from Matzner 2007 although with a steeper velocity power
spectrum than expected for an isotropically driven supersonic turbulent
cascade. Here we perform higher resolution simulations and combine simulations
of outflow driven turbulence with those of isotropically forced turbulence. We
find that the presence of outflows within an ambient isotropically driven
turbulent environment produces a knee in the velocity power spectrum at the
outflow scale and a steeper slope at sub-outflow scales than for a purely
isotropically forced case. We also find that the presence of outflows flattens
the density spectrum at large scales effectively reducing the formation of
large scale turbulent density structures. These effects are qualitatively
independent of resolution. We have also carried out Principal Component
Analysis (PCA) for synthetic data from our simulations. We find that PCA as a
tool for identifying the driving scale of turbulence has a misleading bias
toward low amplitude large scale velocity structures even when they are not
necessarily the dominant energy containing scales. This bias is absent for
isotropically forced turbulence but manifests strongly for collimated outflow
driven turbulence.Comment: 30 pages, 10 figures, Submitted to Ap
PhenoMeter: A Metabolome Database Search Tool Using Statistical Similarity Matching of Metabolic Phenotypes for High-Confidence Detection of Functional Links
This article describes PhenoMeter, a new type of metabolomics database search that accepts metabolite response patterns as queries and searches the MetaPhen database of reference patterns for responses that are statistically significantly similar or inverse for the purposes of detecting functional links. To identify a similarity measure that would detect functional links as reliably as possible, we compared the performance of four statistics in correctly top-matching metabolic phenotypes of Arabidopsis thaliana metabolism mutants affected in different steps of the photorespiration metabolic pathway to reference phenotypes of mutants affected in the same enzymes by independent mutations. The best performing statistic, the PhenoMeter Score (PM Score), was a function of both Pearson correlation and Fisher’s Exact Test of directional overlap. This statistic outperformed Pearson correlation, biweight midcorrelation and Fisher’s Exact Test used alone. To demonstrate general applicability, we show that the PhenoMeter reliably retrieved the most closely functionally-linked response in the database when queried with responses to a wide variety of environmental and genetic perturbations. Attempts to match metabolic phenotypes between independent studies were met with varying success and possible reasons for this are discussed. Overall, our results suggest that integration of pattern-based search tools into metabolomics databases will aid functional annotation of newly recorded metabolic phenotypes analogously to the way sequence similarity search algorithms have aided the functional annotation of genes and proteins. PhenoMeter is freely available at MetabolomeExpress (https://www.metabolome-express.org/phenometer.php)
A New Finite-lattice study of the Massive Schwinger Model
A new finite lattice calculation of the low lying bound state energies in the
massive Schwinger model is presented, using a Hamiltonian lattice formulation.
The results are compared with recent analytic series calculations in the low
mass limit, and with a new higher order non-relativistic series which we
calculate for the high mass limit. The results are generally in good agreement
with these series predictions, and also with recent calculations by light cone
and related techniques
Recommended from our members
Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques.
Herpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host-HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107 PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102 to 103 DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCE Herpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation
Protostellar Outflow Evolution in Turbulent Environments
The link between turbulence in star formatting environments and protostellar
jets remains controversial. To explore issues of turbulence and fossil cavities
driven by young stellar outflows we present a series of numerical simulations
tracking the evolution of transient protostellar jets driven into a turbulent
medium. Our simulations show both the effect of turbulence on outflow
structures and, conversely, the effect of outflows on the ambient turbulence.
We demonstrate how turbulence will lead to strong modifications in jet
morphology. More importantly, we demonstrate that individual transient outflows
have the capacity to re-energize decaying turbulence. Our simulations support a
scenario in which the directed energy/momentum associated with cavities is
randomized as the cavities are disrupted by dynamical instabilities seeded by
the ambient turbulence. Consideration of the energy power spectra of the
simulations reveals that the disruption of the cavities powers an energy
cascade consistent with Burgers'-type turbulence and produces a driving
scale-length associated with the cavity propagation length. We conclude that
fossil cavities interacting either with a turbulent medium or with other
cavities have the capacity to sustain or create turbulent flows in star forming
environments. In the last section we contrast our work and its conclusions with
previous studies which claim that jets can not be the source of turbulence.Comment: 24 pages, submitted to the Astrophysical Journa
- …