30,765 research outputs found
Tether fundamentals
Some fundamental aspects of tethers are presented and briefly discussed. The effects of gravity gradients, dumbbell libration in circular orbits, tether control strategies and impact hazards for tethers are among those fundamentals. Also considered are aerodynamic drag, constraints in momentum transfer applications and constraints with permanently deployed tethers. The theoretical feasibility of these concepts are reviewed
Guidebook for analysis of tether applications
This guidebook is intended as a tool to facilitate initial analyses of proposed tether applications in space. The guiding philosophy is that a brief analysis of all the common problem areas is far more useful than a detailed study in any one area. Such analyses can minimize the waste of resources on elegant but fatally flawed concepts, and can identify the areas where more effort is needed on concepts which do survive the initial analyses. The simplified formulas, approximations, and analytical tools included should be used only for preliminary analyses. For detailed analyses, the references with each topic and in the bibliography may be useful
Optical realization of relativistic non-Hermitian quantum mechanics
Light propagation in distributed feedback optical structures with gain/loss
regions is shown to provide an accessible laboratory tool to visualize in
optics the spectral properties of the one-dimensional Dirac equation with
non-Hermitian interactions. Spectral singularities and PT symmetry breaking of
the Dirac Hamiltonian are shown to correspond to simple observable physical
quantities and related to well-known physical phenomena like resonance
narrowing and laser oscillation.Comment: 4 page
Accumulator for shaft encoder
Digital accumulator relies almost entirely on integrated circuitry to process the data derived from the outputs of gyro shaft encoder. After the read command is given, the output register collects and stores the data that are on the set output terminals of the up-down counters
The Radius of the Proton: Size Does Matter
The measurement by Pohl et al. [1] of the 2S_1/2^F=1 to 2P_3/2^F=2 transition
in muonic hydrogen and the subsequent analysis has led to a conclusion that the
rms charge radius of the proton differs from the accepted (CODATA [2]) value by
approximately 4%, leading to a 4.9 s.d. discrepancy. We investigate the muonic
hydrogen spectrum relevant to this transition using bound-state QED with Dirac
wave-functions and comment on the extent to which the perturbation-theory
analysis which leads to the above conclusion can be confirmed.Comment: Delayed arXiv submission. To appear in 'Proceedings of T(R)OPICALQCD
2010' (September 26 - October 1, 2010). 7 pages, 1 figure. Superseded by
arXiv:1104.297
Rippled Cosmological Dark Matter from Damped Oscillating Newton Constant
Let the reciprocal Newton 'constant' be an apparently non-dynamical
Brans-Dicke scalar field damped oscillating towards its General Relativistic
VEV. We show, without introducing additional matter fields or dust, that the
corresponding cosmological evolution averagely resembles, in the Jordan frame,
the familiar dark radiation -> dark matter -> dark energy domination sequence.
The fingerprints of our theory are fine ripples, hopefully testable, in the FRW
scale factor; they die away at the General Relativity limit. The possibility
that the Brans-Dicke scalar also serves as the inflaton is favorably examined.Comment: RevTex4, 12 pages, 5 figures; Minor revision, References adde
Effects of space environment on composites: An analytical study of critical experimental parameters
A generalized methodology currently employed at JPL, was used to develop an analytical model for effects of high-energy electrons and interactions between electron and ultraviolet effects. Chemical kinetic concepts were applied in defining quantifiable parameters; the need for determining short-lived transient species and their concentration was demonstrated. The results demonstrates a systematic and cost-effective means of addressing the issues and show qualitative and quantitative, applicable relationships between space radiation and simulation parameters. An equally important result is identification of critical initial experiments necessary to further clarify the relationships. Topics discussed include facility and test design; rastered vs. diffuse continuous e-beam; valid acceleration level; simultaneous vs. sequential exposure to different types of radiation; and interruption of test continuity
The Magnetic Topology of the Weak-Lined T Tauri Star V410 - A Simultaneous Temperature and Magnetic Field Inversion
We present a detailed temperature and magnetic investigation of the T Tauri
star V410 Tau by means of a simultaneous Doppler- and Zeeman-Doppler Imaging.
Moreover we introduce a new line profile reconstruction method based on a
singular value decomposition (SVD) to extract the weak polarized line profiles.
One of the key features of the line profile reconstruction is that the SVD line
profiles are amenable to radiative transfer modeling within our Zeeman-Doppler
Imaging code iMap. The code also utilizes a new iterative regularization scheme
which is independent of any additional surface constraints. To provide more
stability a vital part of our inversion strategy is the inversion of both
Stokes I and Stokes V profiles to simultaneously reconstruct the temperature
and magnetic field surface distribution of V410 Tau. A new image-shear analysis
is also implemented to allow the search for image and line profile distortions
induced by a differential rotation of the star. The magnetic field structure we
obtain for V410 Tau shows a good spatial correlation with the surface
temperature and is dominated by a strong field within the cool polar spot. The
Zeeman-Doppler maps exhibit a large-scale organization of both polarities
around the polar cap in the form of a twisted bipolar structure. The magnetic
field reaches a value of almost 2 kG within the polar region but smaller fields
are also present down to lower latitudes. The pronounced non-axisymmetric field
structure and the non-detection of a differential rotation for V410 Tau
supports the idea of an underlying -type dynamo, which is predicted
for weak-lined T Tauri stars.Comment: Accepted for A&A, 18 pages, 10 figure
- …