312 research outputs found
Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: implications for the velocity of cosmic dust entering the atmosphere
The downward fluxes of Fe and Na, measured near the mesopause with the University of Colorado lidars near Boulder, and a chemical ablation model developed at the University of Leeds, are used to constrain the velocity/mass distribution of the meteoroids entering the atmosphere and to derive an improved estimate for the global influx of cosmic dust. We find that the particles responsible for injecting a large fraction of the ablated material into the Earth's upper atmosphere enter at relatively slow speeds and originate primarily from the Jupiter Family of Comets. The global mean Na influx is 17,200 ± 2800 atoms/cm2/s, which equals 298 ± 47 kg/d for the global input of Na vapor and 150 ± 38 t/d for the global influx of cosmic dust. The global mean Fe influx is 102,000 ± 18,000 atoms/cm2/s, which equals 4.29 ± 0.75 t/d for the global input of Fe vapor
A novel instrument to measure differential ablation of meteorite samples and proxies: The Meteoric Ablation Simulator (MASI)
On entering the Earth’s atmosphere, micrometeoroids partially or completely ablate, leaving behind layers of metallic atoms and ions. The relative concentration of the various metal layers is not well explained by current models of ablation. Furthermore, estimates of the total flux of cosmic dust and meteoroids entering the Earth’s atmosphere vary over two orders of magnitude. To better constrain these estimates and to better model the metal layers in the mesosphere, an experimental meteoric Ablation Simulator (MASI) has been developed. Interplanetary Dust Particle (IDP) analogs are subjected to temperature profiles simulating realistic entry heating, to ascertain the differential ablation of relevant metal species. MASI is the first ablation experiment capable of simulating detailed mass, velocity, and entry angle-specific temperature profiles whilst simultaneously tracking the resulting gas-phase ablation products in a time resolved manner. This enables the determination of elemental atmospheric entry yields which consider the mass and size distribution of IDPs. The instrument has also enabled the first direct measurements of differential ablation in a laboratory setting
Relict of Olivines in Micrometeorites: Precursors and interactions in the Earth's atmosphere
Antarctica micrometeorites (~1200) and cosmic spherules (~5000) from deep sea sediments are studied using electron microscopy to identify Mg-rich olivine grains in order to determine the nature of the particle precursors. Mg-rich olivine (FeO < 5wt%) in micrometeorites suffers insignificant chemical modification during its history and is a well-preserved phase. 420 forsterite grains enclosed in 162 micrometeorites of different types - unmelted, scoriaceous and porphyritic - are examined in this study. Forsterites in micrometeorites of different types are crystallized during their formation in solar nebula; their closest analogues are chondrule components of CV-type chondrites or volatile rich CM chondrites. The forsteritic olivines are suggested to have originated from a cluster of closely related carbonaceous asteroids that have Mg-rich olivines in the narrow range of CaO (0.1−0.3 wt%), Al2O3 (0.0−0.3wt%), MnO (0.0−0.3wt%) and Cr2O3 (0.1−0.7wt%). Numerical simulations carried out with the Chemical Ablation Model (CABMOD) enable us to define the physical conditions of atmospheric entry that preserve the original compositions of the Mg-rich olivines in these particles. The chemical compositions of relict olivines affirm the role of heating at peak temperatures and the cooling rates of the micrometeorites. This modelling approach provides a foundation for understanding the ablation of the particles and the circumstances in which the relict grains tend to survive
Characterization of the Extraterrestrial Magnesium Source in the Atmosphere Using a Meteoric Ablation Simulator
Ablation of Mg from meteoroids entering the Earth's atmosphere was studied experimentally using a Meteoric Ablation Simulator: micron‐sized particles of representative meteoritic material were flash heated to simulate atmospheric entry and the ablation rate of Mg with respect to Na measured by fast time‐resolved laser‐induced fluorescence. Over the range of particle diameters and entry velocities studied, Mg ablates 4.3 ± 2.1 times less efficiently than Na and 2.4 ± 0.8 times less efficiently than Fe. The resulting evaporation profiles indicate that Mg mostly ablates around 84 km in the atmosphere, compared with Fe at 88 km and Na at 95 km. The chemical ablation model Chemical Ablation Model predicts satisfactorily the measured peak ablation altitudes and relative ablated fractions of Mg, Na, Fe, and Ca but does not capture the breadth of the ablation profiles, probably due to the inhomogeneity of the minerals present in meteoroids combined with experimental limitations
Injection of meteoric phosphorus into planetary atmospheres
This study explores the delivery of phosphorus to the upper atmospheres of Earth, Mars, and Venus via the ablation of cosmic dust particles. Micron-size meteoritic particles were flash heated to temperatures as high as 2900 K in a Meteor Ablation Simulator (MASI), and the ablation of PO and Ca recorded simultaneously by laser induced fluorescence. Apatite grains were also ablated as a reference. The speciation of P in anhydrous chondritic porous Interplanetary Dust Particles was made by K-edge X-ray absorption near edge structure (XANES) spectroscopy, demonstrating that P mainly occurs in phosphate-like domains. A thermodynamic model of P in a silicate melt was then developed for inclusion in the Leeds Chemical Ablation Model (CABMOD). A Regular Solution model used to describe the distribution of P between molten stainless steel and a multicomponent slag is shown to provide the most accurate solution for a chondritic-composition, and reproduces satisfactorily the PO ablation profiles observed in the MASI. Meteoritic P is moderately volatile and ablates before refractory metals such as Ca; its ablation efficiency in the upper atmosphere is similar to Ni and Fe. The speciation of evaporated P depends significantly on the oxygen fugacity, and P should mainly be injected into planetary upper atmospheres as PO2, which will then likely undergo dissociation to PO (and possibly P) through hyperthermal collisions with air molecules. The global P ablation rates are estimated to be 0.017 t d−1 (tonnes per Earth day), 1.15 × 10−3 t d−1 and 0.024 t d−1 for Earth, Mars and Venus, respectively
CO Oxidation and O2 Removal on Meteoric Material in Venus’ Atmosphere
The heterogeneous oxidation of CO by O2 on olivine, Fe sulfate and Fe oxide particles was studied using a flow tube apparatus between 300 and 680 K. These particles were chosen as possible analogues of unablated cosmic dust and meteoric smoke in Venus’ atmosphere. On olivine and Fe oxides, the rate of CO oxidation to CO2 only becomes significant above 450 K. For iron sulfates, CO2 production was not observed until these dust analogues had decomposed into iron oxides at ∼ 540 K. The CO oxidation rate increases significantly with a higher Fe content in the dust, implying that oxidation occurs through Fe active sites (no reaction was observed on Mg2SiO4). The oxidation kinetics can be explained by CO reacting with chemi-sorbed O2 through an Eley–Rideal mechanism, which is supported by electronic structure calculations. Uptake coefficients were measured from 450 to 680 K, yielding: log10(γ (CO on MgFeSiO4)) = (2.9 ± 0.1) × 10-3 T(K) – (8.2 ± 0.1); log10(γ (CO on Fe2SiO4)) = (2.3 ± 0.3) × 10-3 T(K) – (7.7 ± 0.2); log10(γ (CO on FeOOH/Fe2O3)) = (5.6 ± 0.8) × 10-3 T(K) – (9.3 ± 0.4). A 1-D atmospheric model of Venus was then constructed to explore the role of heterogeneous oxidation. The cosmic dust input to Venus, mostly originating from Jupiter Family Comets, is around 32 tonnes per Earth day. A chemical ablation model was used to show that ∼34% of this incoming mass ablates, forming meteoric smoke particles which, together with unablated dust particles, provide a significant surface for the heterogeneous oxidation of CO to CO2 in Venus’ troposphere. This process should cause almost complete removal of O2 below 40 km, but have a relatively small impact on the CO mixing ratio (since CO is in large excess over O2). Theoretical quantum calculations indicate that the gas-phase oxidation of CO by SO2 in the lower troposphere is not competitive with the heterogeneous oxidation of CO. Finally, the substantial number density of meteoric smoke particles predicted to occur above the cloud tops may facilitate the low temperature heterogeneous chemistry of other species
CO Oxidation and O2 Removal on Meteoric Material in Venus’ Atmosphere
The heterogeneous oxidation of CO by O2 on olivine, Fe sulfate and Fe oxide particles was studied using a flow tube apparatus between 300 and 680 K. These particles were chosen as possible analogues of unablated cosmic dust and meteoric smoke in Venus’ atmosphere. On olivine and Fe oxides, the rate of CO oxidation to CO2 only becomes significant above 450 K. For iron sulfates, CO2 production was not observed until these dust analogues had decomposed into iron oxides at ∼ 540 K. The CO oxidation rate increases significantly with a higher Fe content in the dust, implying that oxidation occurs through Fe active sites (no reaction was observed on Mg2SiO4). The oxidation kinetics can be explained by CO reacting with chemi-sorbed O2 through an Eley–Rideal mechanism, which is supported by electronic structure calculations. Uptake coefficients were measured from 450 to 680 K, yielding: log10(γ (CO on MgFeSiO4)) = (2.9 ± 0.1) × 10-3 T(K) – (8.2 ± 0.1); log10(γ (CO on Fe2SiO4)) = (2.3 ± 0.3) × 10-3 T(K) – (7.7 ± 0.2); log10(γ (CO on FeOOH/Fe2O3)) = (5.6 ± 0.8) × 10-3 T(K) – (9.3 ± 0.4). A 1-D atmospheric model of Venus was then constructed to explore the role of heterogeneous oxidation. The cosmic dust input to Venus, mostly originating from Jupiter Family Comets, is around 32 tonnes per Earth day. A chemical ablation model was used to show that ∼34% of this incoming mass ablates, forming meteoric smoke particles which, together with unablated dust particles, provide a significant surface for the heterogeneous oxidation of CO to CO2 in Venus’ troposphere. This process should cause almost complete removal of O2 below 40 km, but have a relatively small impact on the CO mixing ratio (since CO is in large excess over O2). Theoretical quantum calculations indicate that the gas-phase oxidation of CO by SO2 in the lower troposphere is not competitive with the heterogeneous oxidation of CO. Finally, the substantial number density of meteoric smoke particles predicted to occur above the cloud tops may facilitate the low temperature heterogeneous chemistry of other species
A Modeling Study of the Seasonal, Latitudinal, and Temporal Distribution of the Meteoroid Mass Input at Mars: Constraining the Deposition of Meteoric Ablated Metals in the Upper Atmosphere
This study provides a comprehensive description of the deposition of meteor-ablated metals in the upper atmosphere of Mars, accounting for the temporal, vertical, latitudinal, and seasonal distribution. For this purpose, the Leeds Chemical Ablation Model is combined with a meteoroid input function to characterize the size and velocity distributions of three distinctive meteoroid populations around Mars—the Jupiter-family comets (JFCs), main-belt asteroids, and Halley-type comets (HTCs). These modeling results show a significant midnight-to-noon enhancement of the total mass influx because of the orbital dynamics of Mars, with meteoroid impacts preferentially distributed around the equator for particles with diameters below 2000 μm. The maximum total mass input occurs between the northern winter and the first crossing of the ecliptic plane with 2.30 tons sol−1, with the JFCs being the main contributor to the overall influx with up to 56% around Mars' equator. Similarly, total ablated atoms mainly arise from the HTCs with a maximum injection rate of 0.71 tons sol−1 spanning from perihelion to the northern winter. In contrast, the minimum mass and ablated inputs occur between the maximum vertical distance above the ecliptic plane and aphelion with 1.50 and 0.42 tons sol−1, respectively. Meteoric ablation occurs approximately in the range altitude between 100 and 60 km with a strong midnight-to-noon enhancement at equatorial latitudes. The eccentricity and the inclination of Mars' orbit produces a significant shift of the ablation peak altitude at high latitudes as Mars moves toward, or away, from the northern/southern solstices
The micrometeorite flux at Dome C (Antarctica), monitoring the accretion of extraterrestrial dust on Earth
The annual flux of extraterrestrial material on Earth is largely dominated by sub-millimetre particles. The mass distribution and absolute value of this cosmic dust flux at the Earth’s surface is however still uncertain due to the difficulty in monitoring both the collection efficiency and the exposure parameter (i.e. the area-time product in m2.yr). In this paper, we present results from micrometeorite collections originating from the vicinity of the CONCORDIA Station located at Dome C (Antarctica), where we performed several independent melts of large volumes of ultra-clean snow. The regular precipitation rate and the exceptional cleanliness of the snow from central Antarctica allow a unique control on both the exposure parameter and the collection efficiency. A total of 1280 unmelted micrometeorites (uMMs) and 808 cosmic spherules (CSs) with diameters ranging from 30 to 350 μm were identified. Within that size range, we measured mass fluxes of 3.0 μg.m−2.yr−1 for uMMs and 5.6 μg.m−2.yr−1 for CSs. Extrapolated to the global flux of particles in the 12-700 μm diameter range, the mass flux of dust at Earth’s surface is 5, 200 ± 1500 1200 tons.yr−1 (1, 600 ± 500 and 3, 600 ± 1000 700 tons.yr−1 of uMMs and CSs, respectively). We indicate the statistical uncertainties expected for collections with exposure parameters in the range of 0.1 up to 105 m2.yr. In addition, we estimated the flux of altered and unaltered carbon carried by heated and un-heated particles at Earth’s surface. The mass distributions of CSs and uMMs larger than 100 μm are fairly well reproduced by the CABMOD-ZoDy model that includes melting and evaporation during atmospheric entry of the interplanetary dust flux. These numerical simulations suggest that most of the uMMs and CSs originate from Jupiter family comets and a minor part from the main asteroid belt. The total dust mass input before atmospheric entry is estimated at 15,000 tons.yr−1. The existing discrepancy between the flux data and the model for uMMs below 100 μm suggests that small fragile uMMs may evade present day collections, and/or that the amount of small interplanetary particles at 1 AU may be smaller than expected
- …