513 research outputs found

    Simulating the ideal geometrical and biomechanical parameters of the pulmonary autograft to prevent failure in the Ross operation

    Get PDF
    OBJECTIVES: Reinforcements for the pulmonary autograft (PA) in the Ross operation have been introduced to avoid the drawback of conduit expansion and failure. With the aid of an in silico simulation, the biomechanical boundaries applied to a healthy PA during the operation were studied to tailor the best implant technique to prevent reoperation. METHODS: Follow-up echocardiograms of 66 Ross procedures were reviewed. Changes in the dimensions and geometry of reinforced and non-reinforced PAs were evaluated. Miniroot and subcoronary implantation techniques were used in this series. Mechanical stress tests were performed on 36 human pulmonary and aortic roots explanted from donor hearts. Finite element analysis was applied to obtain high-fidelity simulation under static and dynamic conditions of the biomechanical properties and applied stresses on the PA root and leaflet and the similar components of the native aorta. RESULTS: The non-reinforced group showed increases in the percentages of the mean diameter that were significantly higher than those in the reinforced group at the level of the Valsalva sinuses (3.9%) and the annulus (12.1%). The mechanical simulation confirmed geometrical and dimensional changes detected by clinical imaging and demonstrated the non-linear biomechanical behaviour of the PA anastomosed to the aorta, a stiffer behaviour of the aortic root in relation to the PA and similar qualitative and quantitative behaviours of leaflets of the 2 tissues. The annulus was the most significant constraint to dilation and affected the distribution of stress and strain within the entire complex, with particular strain on the sutured regions. The PA was able to evenly absorb mechanical stresses but was less adaptable to circumferential stresses, potentially explaining its known dilatation tendency over time. CONCLUSIONS: The absence of reinforcement leads to a more marked increase in the diameter of the PA. Preservation of the native geometry of the PA root is crucial; the miniroot technique with external reinforcement is the most suitable strategy in this context

    Monoclonal antibodies against human astrocytomas and their reactivity pattern

    Get PDF
    The establishment of hybridomas after fusion of X63-Ag8.653 mouse myeloma cells and splenocytes from mice hyperimmunized against human astrocytomas is presented. The animals were primed with 5 × 106 chemically modified uncultured or cultured glioma cells. Six weeks after the last immunization step an intrasplenal booster injection was administrated and 3 days later the spleen cells were prepared for fusion experiments. According to the specificity analysis of the generated antibodies 7 hybridoma products (MUC 7-22, MUC 8-22, MUC 10-22, MUC 11-22, MUC 14-22, MUC 15-22 and MUC 2-63) react with gliomas, neuroblastomas and melanomas as well as with embryonic and fetal cells but do not recognize non-neurogenic tumors. The selected monoclonal antibodies (McAbs) of IgG1 and IgG2a isotypes are not extensively characterized but these antibodies have been demonstrated to be reactive with a panel of glioma cell lines with varying patterns of antigen distribution. Using the McAbs described above and a series of cryosections of glioma biopsies and paraffin sections of the same material as well as glioma cultures established from these, variable antigenic profiles among glioma cell populations could be demonstrated. From these results it is evident that there is not only a distinct degree of antigenic heterogeneity among and within brain tumors, but also that the pattern of antigenic expression can change continuously. Some of the glioma associated antigens recognized by the selected antibodies persist after fixation with methanol/acetone and Karnovsky's fixative and probably are oncoembryonic/oncofetal antigen(s). The data suggest that the use of McAbs recognizing tumor associated oncofetal antigens in immunohistochemistry facilitates objective typing of intracranial malignancies and precise analysis of fine needle brain/tumor biopsies in a sensitive and reproducible manner

    Multiplex Cytological Profiling Assay to Measure Diverse Cellular States

    Get PDF
    Computational methods for image-based profiling are under active development, but their success hinges on assays that can capture a wide range of phenotypes. We have developed a multiplex cytological profiling assay that “paints the cell” with as many fluorescent markers as possible without compromising our ability to extract rich, quantitative profiles in high throughput. The assay detects seven major cellular components. In a pilot screen of bioactive compounds, the assay detected a range of cellular phenotypes and it clustered compounds with similar annotated protein targets or chemical structure based on cytological profiles. The results demonstrate that the assay captures subtle patterns in the combination of morphological labels, thereby detecting the effects of chemical compounds even though their targets are not stained directly. This image-based assay provides an unbiased approach to characterize compound- and disease-associated cell states to support future probe discovery

    Sex-Specific Expression of the X-Linked Histone Demethylase Gene Jarid1c in Brain

    Get PDF
    Jarid1c, an X-linked gene coding for a histone demethylase, plays an important role in brain development and function. Notably, JARID1C mutations cause mental retardation and increased aggression in humans. These phenotypes are consistent with the expression patterns we have identified in mouse brain where Jarid1c mRNA was detected in hippocampus, hypothalamus, and cerebellum. Jarid1c expression and associated active histone marks at its 5′end are high in P19 neurons, indicating that JARID1C demethylase plays an important role in differentiated neuronal cells. We found that XX mice expressed Jarid1c more highly than XY mice, independent of their gonadal types (testes versus ovaries). This increased expression in XX mice is consistent with Jarid1c escape from X inactivation and is not compensated by expression from the Y-linked paralogue Jarid1d, which is expressed at a very low level compared to the X paralogue in P19 cells. Our observations suggest that sex-specific expression of Jarid1c may contribute to sex differences in brain function

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation

    Get PDF
    X-chromosome inactivation (XCI) results in the differential marking of the active and inactive X with epigenetic modifications including DNA methylation. Consistent with the previous studies showing that CpG island-containing promoters of genes subject to XCI are approximately 50% methylated in females and unmethylated in males while genes which escape XCI are unmethylated in both sexes; our chromosome-wide (Methylated DNA ImmunoPrecipitation) and promoter-targeted methylation analyses (Illumina Infinium HumanMethylation27 array) showed the largest methylation difference (D = 0.12, p < 2.2 E−16) between male and female blood at X-linked CpG islands promoters. We used the methylation differences between males and females to predict XCI statuses in blood and found that 81% had the same XCI status as previously determined using expression data. Most genes (83%) showed the same XCI status across tissues (blood, fetal: muscle, kidney and nerual); however, the methylation of a subset of genes predicted different XCI statuses in different tissues. Using previously published expression data the effect of transcription on gene-body methylation was investigated and while X-linked introns of highly expressed genes were more methylated than the introns of lowly expressed genes, exonic methylation did not differ based on expression level. We conclude that the XCI status predicted using methylation of X-linked promoters with CpG islands was usually the same as determined by expression analysis and that 12% of X-linked genes examined show tissue-specific XCI whereby a gene has a different XCI status in at least one of the four tissues examined

    Infertility treatment outcome in sub groups of obese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a common disorder with a negative impact on IVF treatment outcome. It is not clear whether morbidly obese women (BMI >= 35 kg/m2) respond to treatment differently as compared to obese women (BMI = 30–34.9 kg/m2) in IVF. Our aim was to compare the outcome of IVF or ICSI treatments in obese patients to that in morbidly obese patients.</p> <p>Methods</p> <p>This retrospective cohort study was conducted in a tertiary care centre. Patients inclusion criteria were as follows; BMI ≥ 30, age 20–40 years old, first cycle IVF/ICSI treatment with primary infertility and long follicular pituitary down regulation protocol.</p> <p>Results</p> <p>A total of 406 obese patients (group A) and 141 morbidly obese patients (group B) satisfied the inclusion criteria. Average BMI was 32.1 ± 1.38 kg/m2 for group A versus 37.7 ± 2.99 kg/m<sup>2 </sup>for group B. Patient age, cause of infertility, duration of stimulation, fertilization rate, and number of transferred embryos were similar in both groups. Compared to group A, group B had fewer medium size and mature follicles (14 vs. 16), fewer oocytes collected (7 vs. 9) and required higher doses of HMG (46.2 vs. 38.5 amps). There was also a higher cancellation rate in group B (28.3% vs. 19%) and lower clinical pregnancy rate per started cycle (19.9% vs. 28.6%).</p> <p>Conclusion</p> <p>In a homogenous infertile and obese patient population stratified according to their BMI, morbid obesity is associated with unfavorable IVF/ICSI cycle outcome as evidenced by lower pregnancy rates. It is recommended that morbidly obese patients undergo appropriate counseling before the initiation of this expensive and invasive therapy.</p

    Influence of muscle fitness test performance on metabolic risk factors among adolescent girls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to examine the association between muscular fitness (MF), assessed by 2 components of Fitnessgram test battery, the Curl-Up and Push-Ups tests and the metabolic risk score among adolescent girls.</p> <p>Methods</p> <p>A total of 229 girls (aged 12-15 years old) comprised the sample of this study. Anthropometric data (height, body mass, waist circumference) were collected. Body mass index (BMI) was also calculated. Muscular strength was assessed taking into account the tests that comprised the FITNESSGRAM test battery, i.e. the curl-up and the push-up. Participants were then categorized in one of 3 categories according the number of tests in which they accomplished the scores that allow them to be classified in health or above health zone. The blood pressure [BP], fasting total cholesterol [TC], low density lipoprotein-cholesterol [LDL-C], high density lipoprotein-cholesterol [HDL-C], triglycerides [TG], glucose, and a metabolic risk score (MRS) were also examined. Physical Activity Index (PAI) was obtained by questionnaire.</p> <p>Results</p> <p>Higher compliance with health-zone criteria (good in the 2 tests), adjusted for age and maturation, were positive and significantly (p ≤ 0.05) associated with height (r = 0.19) and PAI (r = 0.21), while a significant but negative association was found for BMI (r = -0.12); WC (r = -0.19); TC (r = -0.16); TG (r = -0.16); LDL (r = -0.16) and MRS (r = -0.16). Logistic regression showed that who were assigned to MF fittest group were less likely (OR = 0.27; p = 0.003) to be classified overweight/obese and less likely (OR = 0.26; p = 0.03) to be classified as having MRS. This last association was also found for those whom only performed 1 test under the health zone (OR = 0.23; p = 0.02).</p> <p>Conclusions</p> <p>Our data showed that low strength test performance was associated with increased risk for obesity and metabolic risk in adolescent girls even after adjustment for age and maturation.</p

    Dosage Regulation of the Active X Chromosome in Human Triploid Cells

    Get PDF
    In mammals, dosage compensation is achieved by doubling expression of X-linked genes in both sexes, together with X inactivation in females. Up-regulation of the active X chromosome may be controlled by DNA sequence–based and/or epigenetic mechanisms that double the X output potentially in response to autosomal factor(s). To determine whether X expression is adjusted depending on ploidy, we used expression arrays to compare X-linked and autosomal gene expression in human triploid cells. While the average X:autosome expression ratio was about 1 in normal diploid cells, this ratio was lower (0.81–0.84) in triploid cells with one active X and higher (1.32–1.4) in triploid cells with two active X's. Thus, overall X-linked gene expression in triploid cells does not strictly respond to an autosomal factor, nor is it adjusted to achieve a perfect balance. The unbalanced X:autosome expression ratios that we observed could contribute to the abnormal phenotypes associated with triploidy. Absolute autosomal expression levels per gene copy were similar in triploid versus diploid cells, indicating no apparent global effect on autosomal expression. In triploid cells with two active X's our data support a basic doubling of X-linked gene expression. However, in triploid cells with a single active X, X-linked gene expression is adjusted upward presumably by an epigenetic mechanism that senses the ratio between the number of active X chromosomes and autosomal sets. Such a mechanism may act on a subset of genes whose expression dosage in relation to autosomal expression may be critical. Indeed, we found that there was a range of individual X-linked gene expression in relation to ploidy and that a small subset (∼7%) of genes had expression levels apparently proportional to the number of autosomal sets
    corecore