429 research outputs found
Triggering magnetar outbursts in 3D force-free simulations
In this letter, we present the first 3D force-free general relativity
simulations of the magnetosphere dynamics related to the magnetar
outburst/flare phenomenology. Starting from an initial dipole configuration, we
adiabatically increase the helicity by twisting the footprints of a spot on the
stellar surface and follow the succession of quasi-equilibrium states until a
critical twist is reached. Twisting beyond that point triggers instabilities
that results in the rapid expansion of magnetic field lines, followed by
reconnection, as observed in previous axi-symmetric simulations. If the
injection of magnetic helicity goes on, the process is recurrent, periodically
releasing a similar amount of energy, of the order of a few % of the total
magnetic energy. From our current distribution, we estimate the local
temperature assuming that dissipation occurs mainly in the highly resistive
outermost layer of the neutron star. We find that the temperature smoothly
increases with injected twist, being larger for spots located in the tropical
regions than in polar regions, and rather independent of their sizes. After the
injection of helicity ceases, the magnetosphere relaxes to a new stable state,
in which the persistent currents maintain the footprints area slightly hotter
than before the onset of the instability.Comment: 6 pages, 5 figure
Critical behavior of su(1|1) supersymmetric spin chains with long-range interactions
We introduce a general class of su supersymmetric spin chains with
long-range interactions which includes as particular cases the su
Inozemtsev (elliptic) and Haldane-Shastry chains, as well as the XX model. We
show that this class of models can be fermionized with the help of the
algebraic properties of the su permutation operator, and take advantage
of this fact to analyze their quantum criticality when a chemical potential
term is present in the Hamiltonian. We first study the low energy excitations
and the low temperature behavior of the free energy, which coincides with that
of a -dimensional conformal field theory (CFT) with central charge
when the chemical potential lies in the critical interval , being the dispersion relation. We also analyze the
von Neumann and R\'enyi ground state entanglement entropies, showing that they
exhibit the logarithmic scaling with the size of the block of spins
characteristic of a one-boson -dimensional CFT. Our results thus show
that the models under study are quantum critical when the chemical potential
belongs to the critical interval, with central charge . From the analysis
of the fermion density at zero temperature, we also conclude that there is a
quantum phase transition at both ends of the critical interval. This is further
confirmed by the behavior of the fermion density at finite temperature, which
is studied analytically (at low temperature), as well as numerically for the
su elliptic chain.Comment: 13 pages, 6 figures, typeset in REVTe
Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies
We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models
with su spin and long-range non-constant interactions, whose
non-degenerate ground state is a Dicke state of su type. We evaluate in
closed form the reduced density matrix of a block of spins when the whole
system is in its ground state, and study the corresponding von Neumann and
R\'enyi entanglement entropies in the thermodynamic limit. We show that both of
these entropies scale as when tends to infinity, where the
coefficient is equal to in the ground state phase with
vanishing su magnon densities. In particular, our results show that none
of these generalized Lipkin-Meshkov-Glick models are critical, since when
their R\'enyi entropy becomes independent of the parameter
. We have also computed the Tsallis entanglement entropy of the ground state
of these generalized su Lipkin-Meshkov-Glick models, finding that it can
be made extensive by an appropriate choice of its parameter only when
. Finally, in the su case we construct in detail the phase
diagram of the ground state in parameter space, showing that it is determined
in a simple way by the weights of the fundamental representation of su.
This is also true in the su case; for instance, we prove that the region
for which all the magnon densities are non-vanishing is an -simplex in
whose vertices are the weights of the fundamental representation
of su.Comment: Typeset with LaTeX, 32 pages, 3 figures. Final version with
corrections and additional reference
Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates IV: The Puzzle of the Extremely Red OGLE-TR-82 Primary Solved
We present precise new V, I, and K-band photometry for the planetary transit
candidate star OGLE-TR-82. Good seeing V-band images acquired with VIMOS
instrument at ESO VLT allowed us to measure V=20.6+-0.03 mag star in spite of
the presence of a brighter neighbour about 1" away. This faint magnitude
answers the question why it has not been possible to measure radial velocities
for this object. One transit of this star has been observed with GMOS-S
instrument of GEMINI-South telescope in i and g-bands. The measurement of the
transit allows us to verify that this is not a false positive, to confirm the
transit amplitude measured by OGLE, and to improve the ephemeris. The transit
is well defined in i-band light curve, with a depth of A_i=0.034 mag. It is
however, less well defined, but deeper (A_g=0.1 mag) in the g-band, in which
the star is significantly fainter. The near-infrared photometry obtained with
SofI array at the ESO-NTT yields K=12.2+-0.1 and V-K=8.4+-0.1, so red that it
is unlike any other transit candidate studied before. Due to the extreme nature
of this object, we have not yet been able to measure velocities for this star,
but based on the new data we consider two different possible configurations:(1)
a nearby M7V star, or (2) a blend with a very reddened distant red giant. The
nearby M7V dwarf hypothesis would give a radius for the companion of
R_p=0.3+-0.1 R_J, i.e. the size of Neptune. Quantitative analysis of near-IR
spectroscopy finally shows that OGLE-TR-82 is a distant, reddened metal poor
early K giant. This result is confirmed by direct comparison with stellar
templates that gives the best match for a K3III star. Therefore, we discard the
planetary nature of the companion. Based on all the new data, we conclude that
this system is a main-sequence binary blended with a background red giant.Comment: 26 pages, 9 figures, ApJ accepte
Lack of maintenance of motorway fences works against their intended purpose with potential negative impacts on protected species
Linear infrastructure intrusions into natural ecosystems, such as motorways and high-speed railways, causes direct loss of habitat but also impacts fauna through collisions. Wildlife road mortality is well documented and extensive conservation legislation exists in many countries to minimise the negative impact of these infrastructures. However, although these measures are implemented because of legislation, these structures are often not adequately maintained. Here we present data on the functionality of perimeter fences along two motorways in Malaga province (southern Spain) erected to prevent collisions with the common chameleon (Chamaeleo chamaeleon). We sampled the fences along the 14 km of the two motorways included in the 17 1 × 1 km squares of the study area. Our results show that the reptile fence is permeable throughout at those points where the metal sheeting was absent and where the vegetation had overgrown around the fence, hence allowing chameleons to cross. Given our results, we conclude that this situation is likely to be similar in other regions of Spain and in other countries. This is because construction/concessionary companies do not consider the environmental impact of construction projects in the medium and long term, and environmental authorities do not ensure that companies comply with the legislation
On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex
In this paper we present a very exciting overlap between emergent nanotechnology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nanotechnology devices to the biological synaptic update rule known as spike-time-dependent-plasticity (STDP) found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on a behavioral macro-model for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forward but also backward. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim of this paper is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three-terminal memristive type devices. All files used for the simulations are made available through the journal web site1
- …