257 research outputs found
Custom Dual Transportation Mode Detection by Smartphone Devices Exploiting Sensor Diversity
Making applications aware of the mobility experienced by the user can open
the door to a wide range of novel services in different use-cases, from smart
parking to vehicular traffic monitoring. In the literature, there are many
different studies demonstrating the theoretical possibility of performing
Transportation Mode Detection (TMD) by mining smart-phones embedded sensors
data. However, very few of them provide details on the benchmarking process and
on how to implement the detection process in practice. In this study, we
provide guidelines and fundamental results that can be useful for both
researcher and practitioners aiming at implementing a working TMD system. These
guidelines consist of three main contributions. First, we detail the
construction of a training dataset, gathered by heterogeneous users and
including five different transportation modes; the dataset is made available to
the research community as reference benchmark. Second, we provide an in-depth
analysis of the sensor-relevance for the case of Dual TDM, which is required by
most of mobility-aware applications. Third, we investigate the possibility to
perform TMD of unknown users/instances not present in the training set and we
compare with state-of-the-art Android APIs for activity recognition.Comment: Pre-print of the accepted version for the 14th Workshop on Context
and Activity Modeling and Recognition (IEEE COMOREA 2018), Athens, Greece,
March 19-23, 201
Alternativas tecnológicas para la microencapsulación de aceite de chía mediante impregnación asistida con dióxido de carbono supercrítico
Proyecto Integrador (IQ)--FCEFN-UNC, 2019Trata el uso de dióxido de carbono supercrítico para lograr la microencapsulación de aceite de chía en micropartículas de proteínas de sojaFil: Pereyra Carpineti, Julieta. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina
Data and behavioral contracts for web services
The recent trend in Web services is fostering a computing scenario where loosely coupled parties interact in a distributed and dynamic environment. Such interactions are sequences of xml messages and in order to assemble parties – either statically or dynamically – it is important to verify that the “contracts” of the parties are “compatible”. The Web Service Description Language (wsdl) is a standard used for describing one-way (asynchronous) and request/response (synchronous) interactions. Web Service Conversation Language extends wscl contracts by allowing the description of arbitrary, possibly cyclic sequences of exchanged messages between communicating parties. Unfortunately, neither wsdl nor wscl can effectively define a notion of compatibility, for the very simple reason that they do not provide any formal characterization of their contract languages. We define two contract languages for Web services. The first one is a data contract language and allow us to describe a Web service in terms of messages (xml documents) that can be sent or received. The second one is a behavioral contract language and allow us to give an abstract definition of the Web service conversation protocol. Both these languages are equipped with a sort of “sub-typing” relation and, therefore, they are suitable to be used for querying Web services repositories. In particular a query for a service compatible with a given contract may safely return services with “greater” contract
Kinetics of growth of non-equilibrium fluctuations during thermodiffusion in a polymer solution
Abstract.: A thermal diffusion process occurring in a binary liquid mixture is accompanied by long ranged non-equilibrium concentration fluctuations. The amplitude of these fluctuations at large length scales can be orders of magnitude larger than that of equilibrium ones. So far non-equilibrium fluctuations have been mainly investigated under stationary or quasi-stationary conditions, a situation that allows to achieve a detailed statistical characterization of their static and dynamic properties. In this work we investigate the kinetics of growth of non-equilibrium concentration fluctuations during a transient thermodiffusion process, starting from a configuration where the concentration of the sample is uniform. The use of a large molecular weight polymer solution allows to attain a slow dynamics of growth of the macroscopic concentration profile. We focus on the development of fluctuations at small wave vectors, where their amplitude is strongly limited by the presence of gravity. We show that the growth rate of non-equilibrium fluctuations follows a power law Rf(q,t) 1d1t as a function of time, without any typical time scale and independently of the wave vector. We formulate a phenomenological model that allows to relate the rate of growth of non-equilibrium fluctuations to the growth of the macroscopic concentration profile in the absence of arbitrary parameters
“Good Vibrations”: A workshop on oscillations and normal modes
We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic
motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group “Lo spettacolo della Fisica” (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path
The Sol-Gel Process Simulated by Cluster-Cluster Aggregation
The pair-correlation function and its Fourier transform, the
structure factor , are computed during the gelation process of
identical spherical particles using the diffusion-limited cluster-cluster
aggregation model in a box. This numerical analysis shows that the time
evolution of the characteristic cluster size exhibits a crossover close
to the gel time which depends on the volumic fraction . In this model
tends to infinity when the box size tends to infinity. For systems of
finite size, it is shown numerically that, when , the wave vector ,
at which has a maximum, decreases as , where is
an apparent fractal dimension of clusters, as measured from the slo pe of
. The time evolution of the mean number of particles per cluster is also investigated. Our numerical results are in qualitative agreement
with small angle scattering experiments in several systems.Comment: RevTex, 13 pages + 9 postscript figures appended using "uufiles". To
appear in J. of Non-Cryst. Solid
Using formal methods to develop WS-BPEL applications
In recent years, WS-BPEL has become a de facto standard language for orchestration of Web Services. However, there are still some well-known difficulties that make programming
in WS-BPEL a tricky task. In this paper, we firstly point out major loose points of the WS-BPEL specification by means of many examples, some of which are also exploited
to test and compare the behaviour of three of the most known freely available WS-BPEL engines. We show that, as a matter of fact, these engines implement different
semantics, which undermines portability of WS-BPEL programs over different platforms. Then we introduce Blite, a prototypical orchestration language equipped with a formal
operational semantics, which is closely inspired by, but simpler than, WS-BPEL. Indeed, Blite is designed around some of WS-BPEL distinctive features like partner links, process termination, message correlation, long-running business transactions and compensation handlers. Finally, we present BliteC, a software tool supporting a rapid and easy development of WS-BPEL applications via translation of service orchestrations written in Blite into executable WS-BPEL programs. We illustrate our approach by means of a running example borrowed from the official specification of WS-BPEL
Control of silver-polymer aggregation mechanism by primary particle spatial correlations in dynamic fractal-like geometry
Silver nanocrystals have been prepared by reacting silver nitrate with
ascorbic acid in aqueous solution containing a low concentration of a
commercial polynaphtalene sulphonate polymer (Daxad 19). Various crystalline
morphologies have been obtained simply by tuning the reaction temperature. We
have investigated the nanoparticle formation mechanism at three different
temperatures by in situ and time resolved Small Angle X ray Scattering
measurements. By modeling the scattering intensity with interacting spherical
particles in a fractal-like polymer-Ag matrix, we found signatures of
nucleation, growth and assembly of primary particles of about 15-20 nm. We
observed how the time evolution of both spatial correlations between primary
particles and the dynamic fractal geometry of the polymer-Ag matrix could
influence and determine both the aggregation mechanism and the morphology of
forming nanostructures in solution
Equilibrium and nonequilibrium fluctuations at the interface between two fluid phases
We have performed small-angle light-scattering measurements of the static
structure factor of a critical binary mixture undergoing diffusive partial
remixing. An uncommon scattering geometry integrates the structure factor over
the sample thickness, allowing different regions of the concentration profile
to be probed simultaneously. Our experiment shows the existence of interface
capillary waves throughout the macroscopic evolution to an equilibrium
interface, and allows to derive the time evolution of surface tension.
Interfacial properties are shown to attain their equilibrium values quickly
compared to the system's macroscopic equilibration time.Comment: 10 pages, 5 figures, submitted to PR
- …