1,866 research outputs found

    Adaptive Resonance Theory: Self-Organizing Networks for Stable Learning, Recognition, and Prediction

    Full text link
    Adaptive Resonance Theory (ART) is a neural theory of human and primate information processing and of adaptive pattern recognition and prediction for technology. Biological applications to attentive learning of visual recognition categories by inferotemporal cortex and hippocampal system, medial temporal amnesia, corticogeniculate synchronization, auditory streaming, speech recognition, and eye movement control are noted. ARTMAP systems for technology integrate neural networks, fuzzy logic, and expert production systems to carry out both unsupervised and supervised learning. Fast and slow learning are both stable response to large non stationary databases. Match tracking search conjointly maximizes learned compression while minimizing predictive error. Spatial and temporal evidence accumulation improve accuracy in 3-D object recognition. Other applications are noted.Office of Naval Research (N00014-95-I-0657, N00014-95-1-0409, N00014-92-J-1309, N00014-92-J4015); National Science Foundation (IRI-94-1659

    Adaptive Resonance Theory

    Full text link

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    Normal and Amnesic Learning, Recognition, and Memory by a Neural Model of Cortico-Hippocampal Interactions

    Full text link
    The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.Air Force Office of Scientific Research (90-0175); British Petroleum (89A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    Distributed Hypothesis Testing, Attention Shifts and Transmitter Dynatmics During the Self-Organization of Brain Recognition Codes

    Full text link
    BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088

    Learning, Categorization, Rule Formation, and Prediction by Fuzzy Neural Networks

    Full text link
    National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-91-J-4100, N00014-92-J-4015) Air Force Office of Scientific Research (90-0083, N00014-92-J-4015

    Adaptive Resonance Theory

    Full text link
    SyNAPSE program of the Defense Advanced Projects Research Agency (Hewlett-Packard Company, subcontract under DARPA prime contract HR0011-09-3-0001, and HRL Laboratories LLC, subcontract #801881-BS under DARPA prime contract HR0011-09-C-0001); CELEST, an NSF Science of Learning Center (SBE-0354378

    Adaptive Resonance Theory

    Full text link
    Air Force Office of Scientific Research (F49620-92-J-0225); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100

    A Neural Network Architecture for Autonomous Learning, Recognition, and Prediction in a Nonstationary World

    Full text link
    In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.Advanced Research Projects Agency (N00014-92-J-4015); British Petroleum (89A-1204); National Science Foundation (IRI-90-J-4015); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    Brain Categorization: Learning, Attention, and Consciousness

    Full text link
    How do humans and animals learn to recognize objects and events? Two classical views are that exemplars or prototypes are learned. A hybrid view is that a mixture, called rule-plus-exceptions, is learned. None of these models learn their categories. A distributed ARTMAP neural network with self-supervised learning incrementally learns categories that match human learning data on a class of thirty diagnostic experiments called the 5-4 category structure. Key predictions of ART models have received behavioral, neurophysiological, and anatomical support. The ART prediction about what goes wrong during amnesic learning has also been supported: A lesion in its orienting system causes a low vigilance parameter.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-01-1-0624), the National Geospatial Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (EIA-01-30851, IIS-97-20333, SBE-0354378); Office of Naval Research (N00014-95-1-0657, N00014-01-1-0624
    • …
    corecore