12 research outputs found

    Comparative phylogeography in the Atlantic forest and Brazilian savannas: pleistocene fluctuations and dispersal shape spatial patterns in two bumblebees

    Get PDF
    Background: Bombus morio and B. pauloensis are sympatric widespread bumblebee species that occupy two major Brazilian biomes, the Atlantic forest and the savannas of the Cerrado. Differences in dispersion capacity, which is greater in B. morio, likely influence their phylogeographic patterns. This study asks which processes best explain the patterns of genetic variation observed in B. morio and B. pauloensis, shedding light on the phenomena that shaped the range of local populations and the spatial distribution of intra-specific lineages. Results: Results suggest that Pleistocene climatic oscillations directly influenced the population structure of both species. Correlative species distribution models predict that the warmer conditions of the Last Interglacial contributed to population contraction, while demographic expansion happened during the Last Glacial Maximum. These results are consistent with physiological data suggesting that bumblebees are well adapted to colder conditions. Intra-specific mitochondrial genealogies are not congruent between the two species, which may be explained by their documented differences in dispersal ability. Conclusions: While populations of the high-dispersal B. morio are morphologically and genetically homogeneous across the species range, B. pauloensis encompasses multiple (three) mitochondrial lineages, and show clear genetic, geographic, and morphological differences. Because the lineages of B. pauloensis are currently exposed to distinct climatic conditions (and elevations), parapatric diversification may occur within this taxon. The eastern portion of the state of São Paulo, the most urbanized area in Brazil, represents the center of genetic diversity for B. pauloensis

    Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor beta signaling pathway.

    Get PDF
    Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) expression in acute promyelocytic leukemia (APL) impairs transforming growth factor beta (TGFβ) signaling, leading to cell growth advantage. Halofuginone (HF), a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG). Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001) and induced apoptosis (P = 0.002) after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21) and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest

    Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor beta signaling pathway.

    Full text link
    Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) expression in acute promyelocytic leukemia (APL) impairs transforming growth factor beta (TGFβ) signaling, leading to cell growth advantage. Halofuginone (HF), a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG). Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001) and induced apoptosis (P = 0.002) after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21) and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest.http://deepblue.lib.umich.edu/bitstream/2027.42/177161/2/2011:10_Figueiredo-Pontes, LL and Assis PA, et al. PlosOne.pdfPublished versio

    ΔNp73 overexpression promotes resistance to apoptosis but does not cooperate with PML/RARA in the induction of an APL-leukemic phenotype

    No full text
    Submitted by Adagilson Silva ([email protected]) on 2017-06-27T17:49:52Z No. of bitstreams: 1 28035072 2017 luc-del.oa.pdf: 4478429 bytes, checksum: 61bc5d712c23456202844fe304767446 (MD5)Approved for entry into archive by Adagilson Silva ([email protected]) on 2017-06-27T19:06:05Z (GMT) No. of bitstreams: 1 28035072 2017 luc-del.oa.pdf: 4478429 bytes, checksum: 61bc5d712c23456202844fe304767446 (MD5)Made available in DSpace on 2017-06-27T19:06:05Z (GMT). No. of bitstreams: 1 28035072 2017 luc-del.oa.pdf: 4478429 bytes, checksum: 61bc5d712c23456202844fe304767446 (MD5) Previous issue date: 2017-01-31Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, BrasilHere, we evaluated whether the overexpression of transcriptionally inactive ΔNp73 cooperates with PML/RARA fusion protein in the induction of an APL-leukemic phenotype, as well as its role in vitro in proliferation, myeloid differentiation, and drug-induced apoptosis. Using lentiviral gene transfer, we showed in vitro that ΔNp73 overexpression resulted in increased proliferation in murine bone marrow (BM) cells from hCG-PML/RARA transgenic mice and their wild-type (WT) counterpart, with no accumulation of cells at G2/M or S phases; instead, ΔNp73-expressing cells had a lower rate of induced apoptosis. Next, we evaluated the effect of ΔNp73 on stem-cell self-renewal and myeloid differentiation. Primary BM cells lentivirally infected with human ΔNp73 were not immortalized in culture and did not present significant changes in the percentage of CD11b. Finally, we assessed the impact of ΔNp73 on leukemogenesis or its possible cooperation with PML/RARA fusion protein in the induction of an APL-leukemic phenotype. After 120 days of follow-up, all transplanted mice were clinically healthy and, no evidence of leukemia/myelodysplasia was apparent. Taken together, our data suggest that ΔNp73 had no leukemic transformation capacity by itself and apparently did not cooperate with the PML/RARA fusion protein to induce a leukemic phenotype in a murine BM transplantation model. In addition, the forced expression of ΔNp73 in murine BM progenitors did not alter the ATRA-induced differentiation rate in vitro or induce aberrant cell proliferation, but exerted an important role in cell survival, providing resistance to drug-induced apoptosis

    What Do the Transcriptome and Proteome of Menstrual Blood-Derived Mesenchymal Stem Cells Tell Us about Endometriosis?

    No full text
    Given the importance of menstrual blood in the pathogenesis of endometriosis and the multifunctional roles of menstrual mesenchymal stem cells (MenSCs) in regenerative medicine, this issue has gained prominence in the scientific community. Moreover, recent reviews highlight how robust the integrated assessment of omics data are for endometriosis. To our knowledge, no study has applied the multi-omics approaches to endometriosis MenSCs. This is a case-control study at a university-affiliated hospital. MenSCs transcriptome and proteome data were obtained by RNA-seq and UHPLC-MS/MS detection. Among the differentially expressed proteins and genes, we emphasize ATF3, ID1, ID3, FOSB, SNAI1, NR4A1, EGR1, LAMC3, and ZFP36 genes and MT2A, TYMP, COL1A1, COL6A2, and NID2 proteins that were already reported in the endometriosis. Our functional enrichment analysis reveals integrated modulating signaling pathways such as epithelial&ndash;mesenchymal transition (&uarr;) and PI3K signaling via AKT to mTORC1 (&darr; in proteome), mTORC1 signaling, TGF beta signaling, TNFA signaling via NFkB, IL6 STAT3 signaling, and response to hypoxia via HIF1A targets (&uarr; in transcriptome). Our findings highlight primary changes in the endometriosis MenSCs, suggesting that the chronic inflammatory endometrial microenvironment can modulate these cells, providing opportunities for endometriosis etiopathogenesis. Moreover, they identify challenges for future research leveraging knowledge for regenerative and precision medicine in endometriosis
    corecore