23 research outputs found

    Proteomic analysis of protein deposits on worn daily wear silicone hydrogel contact lenses

    Get PDF
    Purpose: Previous studies have demonstrated deposition of tear proteins onto worn contact lenses. In this study, we used proteomic techniques to analyze the protein deposits extracted from worn daily wear silicone hydrogel contact lenses in combination with different lens care solutions. Methods: Worn lenses were collected and protein deposits extracted using urea and surfactant. Protein extracts were desalted, concentrated, and then separated using one-dimensional gel electrophoresis. Individual protein components in extracts were identified using liquid chromatography combined with tandem mass spectrometry (LC-MS-MS) after trypsin digestion. Results: One-dimensional gel electrophoresis revealed that lysozyme and other small proteins (around 20 kDa) were the most abundant proteins in the extracts. LC-MS-MS revealed a wide array of proteins in lens extracts with lysozyme and lipocalin 1 being the most commonly identified in deposit extracts. Conclusions: Worn contact lenses deposit a wide array of proteins from tear film and other sources. Protein deposit profiles varied and were specific for each contact lens material.9 page(s

    Prevalence and seasonal variation of Acanthamoeba in domestic tap water in greater Sydney, Australia

    Get PDF
    Background: This study examined the prevalence of free-living Acanthamoeba in domestic tap water in the greater Sydney region, Australia, and determined any seasonal variation in prevalence. Methods: Fifty-four participants were included in this study following approval from an institutional human research ethics committee. Each participant self-collected two samples (one in summer and another in winter) from the surface of the drain of the bathroom sink using an instructional kit. The samples were cultured by inoculating onto a non-nutrient agar plate seeded with Escherichia coli and incubation at 32°C for two weeks. The plates were microscopically examined for the presence of free-living amoeba. DNA was isolated from 20 samples and a polymerase chain reaction (PCR) assay was performed for amplification of the partial sequence of the 18S ribosomal RNA gene. The PCR amplified products were sequenced using Sanger sequencing and genotyping was performed based on the variation in nucleotide sequences. Results: A total of 97 samples were collected over the two collection periods, with 28.6 per cent of samples morphologically classified as Acanthamoeba. The summer period yielded 16 of 54 (29.6 per cent) samples classified as Acanthamoeba, while the winter period yielded 12 of 43 (27.9 per cent) samples classified as Acanthamoeba. There was no statistically significant difference (p = 0.85) between the prevalence of free-living Acanthamoeba in summer compared to winter. Phylogenetic analysis showed that 15 of 20 (75 per cent) isolates belonged to genotype T4, the most frequent genotype isolated in Acanthamoeba keratitis. Conclusion: The prevalence of free-living Acanthamoeba characterised morphologically in domestic tap water of the greater Sydney region was higher than expected, especially considering the low incidence of Acanthamoeba keratitis in Australia. However, this study did not find variation between seasons. As the T4 genotype was most common, Sydney-based practitioners must always consider Acanthamoeba as a possible causative organism in cases of microbial keratitis, regardless of the season

    Grand Challenges in global eye health: a global prioritisation process using Delphi method

    Full text link
    Background: We undertook a Grand Challenges in Global Eye Health prioritisation exercise to identify the key issues that must be addressed to improve eye health in the context of an ageing population, to eliminate persistent inequities in health-care access, and to mitigate widespread resource limitations. Methods: Drawing on methods used in previous Grand Challenges studies, we used a multi-step recruitment strategy to assemble a diverse panel of individuals from a range of disciplines relevant to global eye health from all regions globally to participate in a three-round, online, Delphi-like, prioritisation process to nominate and rank challenges in global eye health. Through this process, we developed both global and regional priority lists. Findings: Between Sept 1 and Dec 12, 2019, 470 individuals complete round 1 of the process, of whom 336 completed all three rounds (round 2 between Feb 26 and March 18, 2020, and round 3 between April 2 and April 25, 2020) 156 (46%) of 336 were women, 180 (54%) were men. The proportion of participants who worked in each region ranged from 104 (31%) in sub-Saharan Africa to 21 (6%) in central Europe, eastern Europe, and in central Asia. Of 85 unique challenges identified after round 1, 16 challenges were prioritised at the global level; six focused on detection and treatment of conditions (cataract, refractive error, glaucoma, diabetic retinopathy, services for children and screening for early detection), two focused on addressing shortages in human resource capacity, five on other health service and policy factors (including strengthening policies, integration, health information systems, and budget allocation), and three on improving access to care and promoting equity. Interpretation: This list of Grand Challenges serves as a starting point for immediate action by funders to guide investment in research and innovation in eye health. It challenges researchers, clinicians, and policy makers to build collaborations to address specific challenges. Funding: The Queen Elizabeth Diamond Jubilee Trust, Moorfields Eye Charity, National Institute for Health Research Moorfields Biomedical Research Centre, Wellcome Trust, Sightsavers, The Fred Hollows Foundation, The Seva Foundation, British Council for the Prevention of Blindness, and Christian Blind Mission. Translations: For the French, Spanish, Chinese, Portuguese, Arabic and Persian translations of the abstract see Supplementary Materials section

    The Activity of Polyhomoarginine against Acanthamoeba castellanii

    No full text
    Arginine-rich peptides can have broad-spectrum anti-bacterial and anti-fungal activities. Polyhomoarginine consists of highly cationic residues which can act on the negatively charged microbial cell membranes. Acanthamoeba is a free-living protozoan known to cause a rare corneal infection which is difficult to diagnose and treat. This study evaluated the activity of the polyhomoarginines against Acanthamoeba castellanii. Acanthamoeba amoebicidal, amoebistatic, encystation and excystment assays were performed using protocols described in the literature. The activity of polyhomoarginines (PHAs) of different lengths (10 to 400 residues) was measured against the trophozoites and cysts of Acanthamoeba castellanii ATCC30868 in concentrations ranging from 0.93 μM to 15 μM. Data were represented as mean ± SE and analysed using one-way ANOVA. Overall, PHAs demonstrated good anti-acanthamoeba activity against both trophozoites and cysts. PHA 30 reduced the number of viable trophozoites by 99%, inhibited the formation of cysts by 96% and the emergence of trophozoites from cysts by 67% at 3.75 μM. PHA 10 was similarly active, but at a slightly higher concentration of 15 μM, reducing the numbers of viable trophozoites by 98%, inhibiting cyst formation by 84% and preventing the emergence of trophozoites from cysts by 99%. At their greatest anti-amoeba concentrations, PHA 10 gave only 8% haemolysis at 15 μM while PHA 30 gave <40 % haemolysis at 3.75 μM. Polyhomoarginine 10 showed excellent anti-amoebic activity against both forms of Acanthamoeba castellanii and was non-toxic at its most active concentrations. This implies that polyhomoarginines can be developed into a potential therapeutic agent for Acanthamoeba keratitis. However, there is a need to carry out further pre-clinical and then in vivo experiments in the AK animal model

    The Anti-Amoebic Activity of a Peptidomimetic against <i>Acanthamoeba castellanii</i>

    No full text
    Acanthamoeba is a free-living protozoan known to cause keratitis most commonly, especially among contact lens wearers. Treatment of Acanthamoeba keratitis is challenging as Acanthamoeba can encyst from the active form, a trophozoite, into a hibernating cyst that is refractory to antibiotics and difficult to kill; therefore, there is a need for more effective anti-amoebic strategies. In this study, we have evaluated the anti-amoebic activity of the antimicrobial peptide mimic RK-758 against Acanthamoeba castellanii. RK-758 peptidomimetic was subjected to biological assays to investigate its amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects on A. castellanii. The anti-amoebic activity of the peptide mimic RK-758 was compared with chlorhexidine against the Acanthamoeba castellanii ATCC30868 and Acanthamoeba castellanii 044 (a clinical strain) with the concentrations of both ranging from 125 µM down to 7.81 µM. All experiments were performed in duplicate with three independent replicates. The data were represented as mean ± SE and analysed using a two-sample t-test and two-tailed distributions. A p Acanthamoeba activity against both trophozoites and cysts in a dose-dependent manner. The RK-758 had amoebicidal and growth inhibitory activities of ≥50% at a concentration between 125 µM and 15.6 µM against the trophozoites of both Acanthamoeba strains. Inhibitory effects on the cyst formation and trophozoite re-emergence from cysts were noted at similar concentrations. Chlorhexidine had 50% activity at 7.81 µM and above against the trophozoites and cysts of both strains. In the haemolysis assay, the RK-758 lysed horse RBCs at concentrations greater than 50 µM whereas lysis occurred at concentrations greater than 125 µM for the chlorhexidine. The peptidomimetic RK-758, therefore, has activity against both the trophozoite and cyst forms of Acanthamoeba and has the potential to be further developed as an anti-microbial agent against Acanthamoeba. RK-758 may also have use as an anti-amoebic disinfectant in contact lens solutions
    corecore