33 research outputs found
Levels of N-methyl-2-pyrrolidone (NMP) and its metabolites in plasma and urine from volunteers after experimental exposure to NMP in dry and humid air.
Department of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University Hospital, S-221 85 Lund, Sweden. The aim of this study was to investigate if the uptake of N-methyl-2-pyrrolidone (NMP), a widely used industrial chemical, increases after exposure to NMP in humid air compared to dry air. NMP has been described to be an airway irritant and a developmentally toxic compound. Six male volunteers were exposed to NMP, three at the time, for 8h in an exposure chamber. They were each exposed on four different occasions to air levels of 0 and 20mg NMP/m(3) in dry and humid air. Blood and urine were sampled before, during and up to 5 days after the end of the 8-h exposure. Plasma and urine were analysed for NMP and its metabolites, using liquid chromatography-tandem mass spectrometry. There was no statistically significant increase in the total cumulated excretion of NMP and its metabolites in urine after exposure in humid air as compared to dry air. Furthermore, there were no differences in the levels of peak concentrations in either plasma or urine. Also, no differences were found in AUC between the exposures. However, there were large individual differences, especially for the exposure in humid air. A not previously identified metabolite in human, 2-pyrrolidone (2-P), was identified. The results do not support a significantly higher absorption of NMP at exposure in humid air as compared to dry air. However, the large individual differences support the use of biological monitoring for assessment of NMP exposure. In addition, 2-P was confirmed to be an NMP metabolite in humans. This may be of importance for the developmental toxicity of NMP since 2-P have been described to be a reproductively toxic substance
Evaluation of exposure biomarkers from percutaneous absorption of N-methyl-2-pyrrolidone.
OBJECTIVES: The aim of this study was to evaluate different biomarkers of exposure to N-methyl-2-pyrrolidone (NMP), a widely used industrial chemical. For this purpose, differences in toxicokinetics between men and women and between pure and water-mixed NMP were evaluated after dermal absorption. METHODS: Six female and six male volunteers (groups 1 and 2) were topically exposed for 6 hours to 300 mg of NMP. An additional group of six male volunteers (group 3) was exposed to 300 mg of NMP in a 50% water solution. Blood and urine were sampled before, during, and up to 9 days after the exposure. Plasma and urine were analyzed using mass spectrometry. RESULTS: For groups 1 and 2, 16% and 18% of the applied dose were recovered in the urine as the sum of NMP and its metabolites. For group 3, 4% was recovered. The maximal concentration of 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) was 10, 8.1, and 2.1 micromol/l for groups 1, 2 and 3, respectively, in plasma and 420, 360 and 62 micromol/l in urine adjusted for density. For 2-hydroxy-N-methylsuccinimide (2-HMSI), the maximal concentration was 5.4, 4.5, and 1.3 micromol/l for groups 1, 2 and 3, in plasma, respectively, and 110, 82 and 19 micromol/l in urine adjusted for density. For 5-HNMP there was a difference in time to reach the maximal concentration depending on whether pure NMP or 50% NMP in water was used. No such difference was seen for 2-HMSI. The differences in kinetics between male and female volunteers were small. CONCLUSIONS: Preferably 2-HMSI should be used as the biomarker of exposure to NMP
Determination of 5-hydroxy-N-methyl-2-pyrrolidone and 2-hydroxy-N-methylsuccinimide in human plasma and urine using liquid chromatography-electrospray tandem mass spectrometry
A method for simultaneous determination of 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) was developed. These compounds are metabolites from N-methyl-2-pyrrolidone (NMP), a powerful and widely used organic solvent. 5-HNMP and 2-HMSI were purified from plasma and urine by solid-phase extraction using Isolute ENV+ columns, and analysed by liquid chromatography coupled to a mass spectrometer fitted with an atmospheric pressure turbo ion spray ionisation interface in the positive ion mode. The method was validated for plasma and urine concentrations from 0.12 to 25 microg/ml. The recoveries for 5-HNMP and 2-HMSI in plasma were 99 and 98%, respectively, and in urine 111 and 106%, respectively. For 5-HNMP and 2-HMSI, the within-day precision in plasma was 1-4 and 3-6%, respectively, and in urine 2-12 and 3-10%, respectively. The corresponding data for the between-day precision was 5 and 3-6%, respectively, and 4-6 and 7-8%, respectively. The detection limit for 5-HNMP was 4 ng/ml in plasma and 120 ng/ml in urine. For 2-HMSI, it was 5 ng/ml in plasma and 85 ng/ml in urine. The method is applicable for analysis of plasma and urine samples from workers exposed to NMP
Cubosomes for Ruthenium complex delivery: formulation and characterization
An amphiphilic ruthenium-based molecule (DOPURu) with potential antineoplastic activity has been synthesized, and its aggregation behavior in the presence of phospholipids has been investigated. A very rich variety of aggregates has been found, spanning from vesicles to cubic bicontinuous phases. Cubosomes here presented represent one of the first systems with potential use for medical therapy
Self-Assembled Silica-Carbonate Structures and Detection of Ancient Microfossils
4 pages.-- PMID: 14615534 [PubMed].We have synthesized inorganic micron-sized filaments, whose microstucture consists of silica-coated nanometer-sized carbonate crystals, arranged with strong orientational order. They exhibit noncrystallographic, curved, helical morphologies, reminiscent of biological forms. The filaments are similar to supposed cyanobacterial microfossils from the Precambrian Warrawoona chert formation in Western Australia, reputed to be the oldest terrestrial microfossils. Simple organic hydrocarbons, whose sources may also be abiotic and indeed inorganic, readily condense onto these filaments and subsequently polymerize under gentle heating to yield kerogenous products. Our results demonstrate that abiotic and morphologically complex microstructures that are identical to currently accepted biogenic materials can be synthesized inorganically.Peer reviewe