4,728 research outputs found

    Relativistic kinematics beyond Special Relativity

    Full text link
    In the context of departures from Special Relativity written as a momentum power expansion in the inverse of an ultraviolet energy scale M, we derive the constraints that the relativity principle imposes between coefficients of a deformed composition law, dispersion relation, and transformation laws, at first order in the power expansion. In particular, we find that, at that order, the consistency of a modification of the energy-momentum composition law fixes the modification in the dispersion relation. We therefore obtain the most generic modification of Special Relativity that preserves the relativity principle at leading order in 1/M.Comment: Version with minor corrections, to appear in Phys. Rev.

    Computer simulation of fatigue under diametrical compression

    Get PDF
    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.Comment: 7 pages, 8 figures, RevTex forma

    Very-High-Energy Gamma-Ray Signal from Nuclear Photodisintegration as a Probe of Extragalactic Sources of Ultrahigh-Energy Nuclei

    Get PDF
    It is crucial to identify the ultrahigh-energy cosmic-ray (UHECR) sources and probe their unknown properties. Recent results from the Pierre Auger Observatory favor a heavy nuclear composition for the UHECRs. Under the requirement that heavy nuclei survive in these sources, using gamma-ray bursts as an example, we predict a diagnostic gamma-ray signal, unique to nuclei - the emission of de-excitation gamma rays following photodisintegration. These gamma rays, boosted from MeV to TeV-PeV energies, may be detectable by gamma-ray telescopes such as VERITAS, HESS, and MAGIC, and especially the next-generation CTA and AGIS. They are a promising messenger to identify and study individual UHE nuclei accelerators.Comment: 7 pages, 4 figures, accepted for publication in PRD, with extended descriptions. Conclusions unchange

    Surface magnetism in ZnO/Co3O4 mixtures

    Get PDF
    We recently reported the observation of room temperature ferromagnetism in mixtures of ZnO and Co3O4 despite the diamagnetic and antiferromagnetic character of these oxides respectively. Here we present a detailed study on the electronic structure of this material in order to account for this unexpected ferromagnetism. Electrostatic interactions between both oxides lead to a dispersion of Co3O4 particles over the surface of ZnO larger ones. As a consequence, the reduction of Co+3 to Co2+ at the particle surface takes place as evidenced by XAS measurements and optical spectrocopy. This reduction allows to xplain the observed ferromagnetic signal within the well established theories of magnetism.Comment: Accepted in Journal of Applied Physic

    Where is the warm H2 ? A search for H2 emission from disks around Herbig Ae/Be stars

    Full text link
    Mid-IR emission lines of H2 are useful probes to determine the mass of warm gas present in the surface layers of disks. Numerous observations of Herbig Ae/Be stars (HAeBes) have been performed, but only 2 detections of mid-IR H2 toward HD97048 and AB Aur have been reported. We aim at tracing the warm gas in the disks of 5 HAeBes with gas-rich environments and physical characteristics close to those of AB Aur and HD97048, to discuss whether the detections toward these 2 objects are suggestive of peculiar conditions for the gas. We search for the H2 S(1) emission line at 17.035 \mu\m with VISIR, and complemented by CH molecule observations with UVES. We gather the H2 measurements from the literature to put the new results in context and search for a correlation with some disk properties. None of the 5 VISIR targets shows evidence for H2 emission. From the 3sigma upper limits on the integrated line fluxes we constrain the amount of optically thin warm gas to be less than 1.4 M_Jup in the disk surface layers. There are now 20 HAeBes observed with VISIR and TEXES instruments to search for warm H2, but only two detections (HD97048 and AB Aur) were made so far. We find that the two stars with detected warm H2 show at the same time high 30/13 \mu\m flux ratios and large PAH line fluxes at 8.6 and 11.3 \mu\m compared to the bulk of observed HAeBes and have emission CO lines detected at 4.7 \mu\m. We detect the CH 4300.3A absorption line toward both HD97048 and AB Aur with UVES. The CH to H2 abundance ratios that this would imply if it were to arise from the same component as well as the radial velocity of the CH lines both suggest that CH arises from a surrounding envelope, while the detected H2 would reside in the disk. The two detections of the S(1) line in the disks of HD97048 and AB Aur suggest either peculiar physical conditions or a particular stage of evolution.Comment: accepted for publication in A&A : 10 pages, 6 figure

    Inner disk clearing around the Herbig Ae star HD\,139614: Evidence for a planet-induced gap ?

    Full text link
    Spatially resolving the inner dust cavity of the transitional disks is a key to understanding the connection between planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap, in the dust, that was spatially resolved by mid-IR interferometry. Using new NIR interferometric observations, we aim to characterize the 0.1-10~au region of the HD~139614 disk further and identify viable mechanisms for the inner disk clearing. We report the first multiwavelength radiative transfer modeling of the interferometric data acquired on HD~139614 with PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometries. We confirm a gap structure in the um-sized dust, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing surface density profile, and a depletion of 10^3 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD~139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the gaseous disk structure. Indeed, a narrow au-sized gap is expected when a single giant planet interacts with the disk. Assuming that small dust grains are well coupled to the gas, we found that a ~ 3~Mjup planet located at 4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion in gas occurred in the inner disk, in contrast to the dust. However, the dust-depleted inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD~139614 disk.Comment: Version accepted in A&A, with typos corrections in the tex

    Transient backbending behavior in the Ising model with fixed magnetization

    Full text link
    The physical origin of the backbendings in the equations of state of finite but not necessarily small systems is studied in the Ising model with fixed magnetization (IMFM) by means of the topological properties of the observable distributions and the analysis of the largest cluster with increasing lattice size. Looking at the convexity anomalies of the IMFM thermodynamic potential, it is shown that the order of the transition at the thermodynamic limit can be recognized in finite systems independently of the lattice size. General statistical mechanics arguments and analytical calculations suggest that the backbending in the caloric curve is a transient behaviour which should not converge to a plateau in the thermodynamic limit, while the first order transition is signalled by a discontinuity in other observables.Comment: 24 pages, 11 figure

    About Locality and the Relativity Principle Beyond Special Relativity

    Full text link
    Locality of interactions is an essential ingredient of Special Relativity. Recently, a new framework under the name of relative locality \cite{AmelinoCamelia:2011bm} has been proposed as a way to consider Planckian modifications of the relativistic dynamics of particles. We note in this paper that the loss of absolute locality is a general feature of theories beyond Special Relativity with an implementation of a relativity principle. We give an explicit construction of such an implementation and compare it both with the previously mentioned framework of relative locality and the so-called Doubly Special Relativity theories.Comment: 10 pages, no figure
    • …
    corecore