650 research outputs found

    Covalently Binding the Photosystem I to Carbon Nanotubes

    Full text link
    We present a chemical route to covalently couple the photosystem I (PS I) to carbon nanotubes (CNTs). Small linker molecules are used to connect the PS I to the CNTs. Hybrid systems, consisting of CNTs and the PS I, promise new photo-induced transport phenomena due to the outstanding optoelectronic properties of the robust cyanobacteria membrane protein PS I

    Optoelectronic sensitization of carbon nanotubes by CdTe nanocrystals

    Get PDF
    We investigate the photoconductance of single-walled carbon nanotube-nanocrystal hybrids. The nanocrystals are bound to the nanotubes via molecular recognition. We find that the photoconductance of the hybrids can be adjusted by the absorption characteristics of the nanocrystals. In addition, the photoconductance of the hybrids surprisingly exhibits a slow time constant of about 1 ms after excitation of the nanocrystals. The data are consistent with a bolometrically induced current increase in the nanotubes caused by photon absorption in the nanocrystals

    Scenario of inflationary cosmology from the phenomenological Λ\Lambda models

    Full text link
    Choosing the three phenomenological models of the dynamical cosmological term Λ\Lambda, viz., Λ(a˙/a)2\Lambda \sim (\dot a/a)^2, Λa¨/a\Lambda \sim {\ddot a/a} and Λρ\Lambda \sim \rho where aa is the cosmic scale factor, it has been shown by the method of numerical analysis that the three models are equivalent for the flat Universe k=0k=0. The evolution plots for dynamical cosmological term Λ\Lambda vs. time tt and also the cosmic scale factor aa vs. tt are drawn here for k=0,+1k=0, +1. A qualitative analysis has been made from the plots which supports the idea of inflation and hence expanding Universe.Comment: 12 latex pages with 12 figures; Replaced with the revised version; Accepeted for `J. Non-lin. Frac. Phen. Sci. Engg.

    Giant magnetic anisotropy at nanoscale: overcoming the superparamagnetic limit

    Get PDF
    It has been recently observed for palladium and gold nanoparticles, that the magnetic moment at constant applied field does not change with temperature over the range comprised between 5 and 300 K. These samples with size smaller than 2.5 nm exhibit remanence up to room temperature. The permanent magnetism for so small samples up to so high temperatures has been explained as due to blocking of local magnetic moment by giant magnetic anisotropies. In this report we show, by analysing the anisotropy of thiol capped gold films, that the orbital momentum induced at the surface conduction electrons is crucial to understand the observed giant anisotropy. The orbital motion is driven by localised charge and/or spin through spin orbit interaction, that reaches extremely high values at the surfaces. The induced orbital moment gives rise to an effective field of the order of 103 T that is responsible of the giant anisotropy.Comment: 15 pages, 2 figures, submitted to PR

    Unitary representations of nilpotent super Lie groups

    Full text link
    We show that irreducible unitary representations of nilpotent super Lie groups can be obtained by induction from a distinguished class of sub super Lie groups. These sub super Lie groups are natural analogues of polarizing subgroups that appear in classical Kirillov theory. We obtain a concrete geometric parametrization of irreducible unitary representations by nonnegative definite coadjoint orbits. As an application, we prove an analytic generalization of the Stone-von Neumann theorem for Heisenberg-Clifford super Lie groups

    Two-dimensional metric and tetrad gravities as constrained second order systems

    Get PDF
    Using the Gitman-Lyakhovich-Tyutin generalization of the Ostrogradsky method for analyzing singular systems, we consider the Hamiltonian formulation of metric and tetrad gravities in two-dimensional Riemannian spacetime treating them as constrained higher-derivative theories. The algebraic structure of the Poisson brackets of the constraints and the corresponding gauge transformations are investigated in both cases.Comment: replaced with revised version published in Mod.Phys.Lett.A22:17-28,200

    Dotted and Undotted Algebraic Spinor Fields in General Relativity

    Full text link
    We investigate using Clifford algebra methods the theory of algebraic dotted and undotted spinor fields over a Lorentzian spacetime and their realizations as matrix spinor fields, which are the usual dotted and undotted two component spinor fields. We found that some ad hoc rules postulated for the covariant derivatives of Pauli sigma matrices and also for the Dirac gamma matrices in General Relativity cover important physical meaning, which is not apparent in the usual matrix presentation of the theory of two components dotted and undotted spinor fields. We also discuss some issues related to the the previous one and which appear in a proposed "unified" theory of gravitation and electromagnetism which use two components dotted and undotted spinor fields and also paravector fields, which are particular sections of the even subundle of the Clifford bundle of spacetime.Comment: some new misprints have been correcte

    Behavior of Einstein-Rosen Waves at Null Infinity

    Get PDF
    The asymptotic behavior of Einstein-Rosen waves at null infinity in 4 dimensions is investigated in {\it all} directions by exploiting the relation between the 4-dimensional space-time and the 3-dimensional symmetry reduction thereof. Somewhat surprisingly, the behavior in a generic direction is {\it better} than that in directions orthogonal to the symmetry axis. The geometric origin of this difference can be understood most clearly from the 3-dimensional perspective.Comment: 16 pages, REVETEX, CGPG-96/5-

    Lorentz gauge theory as a model of emergent gravity

    Full text link
    We consider a class of Lorentz gauge gravity theories within Riemann-Cartan geometry which admits a topological phase in the gravitational sector. The dynamic content of such theories is determined only by the contortion part of the Lorentz gauge connection. We demonstrate that there is a unique Lagrangian that admits propagating spin one mode in correspondence with gauge theories of other fundamental interactions. Remarkably, despite the R^2 type of the Lagrangian and non-compact structure of the Lorentz gauge group, the model possesses rather a positive-definite Hamiltonian. This has been proved in the lowest order of perturbation theory. This implies further consistent quantization and leads to renormalizable quantum theory. It is assumed that the proposed model describes possible mechanism of emergent Einstein gravity at very early stages of the Universe due to quantum dynamics of contortion.Comment: 11 pages, final version, minor correction

    A radiating dyon solution

    Full text link
    We give a non-static exact solution of the Einstein-Maxwell equations (with null fluid), which is a non-static magnetic charge generalization to the Bonnor-Vaidya solution and describes the gravitational and electromagnetic fields of a nonrotating massive radiating dyon. In addition, using the energy-momentum pseudotensors of Einstein and Landau and Lifshitz we obtain the energy, momentum, and power output of the radiating dyon and find that both prescriptions give the same result.Comment: 9 pages, LaTe
    corecore